
International Journal of Recent Advances in Multidisciplinary Topics

Volume 2, Issue 10, October 2021

https://www.ijramt.com | ISSN (Online): 2582-7839

*Corresponding author: mehrasparsh671@gmail.com

4

Abstract: Programming is a basic course that is instructed to

each computer science during their underlying semesters. The

course acquaints the understudies with nuts and bolts tasks and

engineering of computers, and furthermore cleans the critical

thinking abilities of understudies. Other than these benefits,

programming language fills in as a basic device for examining,

studying and understanding progressed ideas of computer science

that the understudies are instructed in later semesters of their

undergrad contemplates. Subsequently, the determination of a

programming language for teaching to computer science

understudies is critical. During the beyond couple of years, there

have been various programming languages developed, for

example, COBOL, FORTRAN, Algol, Miranda, Oberon, Ada and

Java and so forth With the progression of time, some these

languages have lost unmistakable quality while a few new

languages have arisen. Hence, the determination of a

programming language for teaching has consistently stayed a

significant examination question for academicians. In this paper,

a comparative investigation of contemporary programming

languages is performed. After a cautious assessment of current

educational plan and market requests, we have chosen C/C++, C#,

Java, Pascal, GW Basic and JavaScript for examination. The

target of this study is to figure out which programming language

languages ought to be educated to computer science understudies

at introductory level. The paper investigates the chose

programming languages dependent on various boundaries and

gives suggestions on the choice of programming language.

Keywords: Why, so, many, programming, languages

1. Introduction

Basically, the justification for why there are so many

programming languages is on the grounds that every language's

plan includes compromise. Engineers need a language that is

not difficult to work with, exceptionally preformat, and uphold

the provisions they feel are generally helpful. Nonetheless, not

all are conceivable at the same time, so language originators

need to pick which to focus on. In this manner, few out of every

odd language can fulfill each engineer’s inclinations. Luckily,

the availability and development of current language creation

apparatuses (lexers, parsers, compilers, transpilers, and

translators) makes it simpler for designers to make new

languages explicit to their own necessities. In any case, the

resultant excess of new programming languages has not been

met with a fast cease to exist of more seasoned programming

languages. Pillars like C/C++, Java and PHP are above and

beyond 20 years of age and are giving no indications of dialing

back, because of their unwavering quality and solid local area

support. Considerably more established languages like Fortran,

a language previously delivered in 1957, still see successive use

in government and monetary frameworks, where the expense of

reworking such gigantic, crucial programming in another

language offsets the advantages. Obviously, these languages

have upsides and downsides. In this article, we'll talk about a

portion of the reasons there are so many programming

languages to look over. There are more computer languages in

presence than anyone knows, and even more continue to get

made each year. There isn't actually any incredible motivation

to continue making more languages, on the grounds that current

languages are satisfactory to accomplish any assignment we can

imagine Mostly individuals simply make new languages since

they can, and from time to time someone fosters a language that

is adequate that a many individuals begin utilizing it.

That doesn't imply that disliked languages are terrible. Some

generally excellent languages are not exceptionally well known

by any means. A few languages are as yet being used however

commonly viewed as old. At the point when a language

becomes outdated, that implies it is basically dead, in light of

the fact that no new applications will be made with it. So the

main motivation behind why there's a ton of languages is on the

grounds that individuals continue to make them, in any event,

when they don't actually have to. Another explanation is on the

grounds that a few languages are greatly improved fit to specific

errands than others. Some programming languages are

additionally a lot simpler to learn than others.

2. Compiled versus Interpreted Programming Languages

Maybe the most powerful choice in a language's plan is

whether it will be compiled or interpreted. Compiled languages,

like C++, Go, and Rust, are converted into machine code early,

yielding a streamlined executable document. Interpreted

languages like Python, JavaScript, and Ruby are meant machine

code at runtime.

Compiled languages will in general be quicker than

interpreted ones. Since the most common way of changing

source code over to machine code doesn't have to happen as

fast, compilers can present advancements that mediators can't.

In any case, this implies that designers utilizing compiled

languages should stand by longer than interpreted language

clients between rolling out an improvement in code and testing

the program. Another distinction is that compiled languages

will in general be statically composed (every factor holds a

predefined type like an Integer or String, known early), while

interpreted languages are ordinarily progressively composed (a

Why so Many Programming Languages

Sparsh Mehra*

S. Mehra et al. International Journal of Recent Advances in Multidisciplinary Topics, VOL. 2, NO. 10, OCTOBER 2021 5

variable can store a worth of any sort). Static composing can be

viewed as excessively prohibitive by certain engineers,

however it diminishes the quantity of blunders that can happen

at runtime, since most befuddling type mistakes will be gotten

at incorporate time. For instance, endeavoring to gather a

number and a memory address into a single unit will cause a

runtime blunder in a progressively composed language,

however a statically composed language can distinguish and

caution about this mistake before program execution. Taking

care of these sorts of choices is essential for the explanation

such countless new languages have been made over the long

run. Designers requiring the quickest program execution might

partake in the simplicity of programming in Python, yet that

language’s interpreted nature restricts its presentation

contrasted with compiled languages like C++. This Separation

has prompted the production of Nim, a statically-composed,

compiled language with Python-like syntax and components,

among different languages.

3. Syntax

One more vital part of making a programming language is

the syntax. At the most minimal level, computer preparing chips

comprehend machine code - twofold guidelines comprised of

examples of ones and zeroes. Hypothetically people could

compose programs thusly, however it would be extraordinarily

illogical. Low level computing construct is a stage higher up in

the chain, permitting a negligible arrangement of intelligible

watchwords that can be utilized to compose code. Albeit some

extremely specialized specialists can code thusly, by far most

of people need something better. More elevated level

programming languages like C, C++, Java, Python, and

Javascript give a hearty arrangement of receptive catchphrases

that make programming considerably more available to an

expansive crowd. This decreases the expectation to absorb

information and permits languages to acquire foothold develop

their networks. In any case, even a hearty arrangement of

catchphrases can be furnished with shifting syntax to attempt to

further develop designer encounters. For instance, a few

languages use semicolons to isolate proclamations, and

enclosure to embody blocks/scopes. Here is one more table

with regards to how simple it is for fledglings to gain

proficiency with every language:

Relaxed to absorb somewhat interesting Very hard

BASIC C (and C++) Fortran

Xojo PHP Ruby

Python JavaScript Ada

HTML Pascal Java

CSS SQL Perl

And, lastly, this table displays how numerous abilities decode

into career occasions:

Ability Employ Base Wage Base

Ada very low high

ASP very low low to mid

BASIC very low low

C / C++ very high very high

Fortran very low high

HTML & CSS very high low

Java high high to very high

JavaScript high high

Pascal (and Delphi) very low very low

PHP & SQL high mid to high

Python mid mid to low

Ruby low very high

Utilizing these tables will make it somewhat simpler to pick

the language that you feel is ideal for you. That is vital, that you

ought to pick it yourself dependent on your own measures, and

not what another person believes is best for you. Learning ought

to be fun, and attempting to learn something you don't actually

like is normally not going to give the best outcomes.

1) Models for Comparison

The models for correlation depend on the reaction of

different computer science instructors to embrace a specific

language for teaching. We chiefly embrace the measures gave

in [6] and [5]. Following models have been considered for

assessment of language: Effortlessness: In request to be

educated as introductory level course, a language ought to be

exceptionally basic and nearer to regular language. A language

nearer to human language is intelligible and simpler to be

perceived by a beginner client.

2) Writability

A language ought to give an extensive arrangement of develops

and APIs to be helpful for universally useful just as explicit

programming errands.

3) Dependability

A language ought to have great unwavering quality.

Specifically support for pointers, association and associating

and so on ought to be debilitate. Moreover, support for

affirmations, mistake checking and special case taking care of

ought to be given by the language with the end goal that unusual

states of the program are appropriately dealt with by the

developers. Suitable Data Structures: A language ought to have

support for assortment of crude information types and

furthermore have the arrangement to develop client

characterized information types on a case by case basis.

4) Accessibility/Cost to understudies

 The expense of advancement stage ought to be low. In a

perfect world, improvement apparatuses, compilers, mediators

and Integrated Development Environment (IDEs) ought to be

unreservedly accessible as open source instruments. Market

interest: It is prescribed that the language being instructed to

S. Mehra et al. International Journal of Recent Advances in Multidisciplinary Topics, VOL. 2, NO. 10, OCTOBER 2021 6

computer science under study ought to have appeal in market.

There ought to be suitable positions accessible for designers.

5) Local area Support

 The language ought to have documentation, instructional

exercises, and local area's help and engineer gatherings broadly

accessible.

6) Operating system/Machine Limitations

The language ought to have least stage prerequisites.

Specifically, it ought to be effectively ready to run on normal

working framework. Expansions/Libraries accessible: The

language ought to have augmentations accessible in wealth for

explicit errands, for example, drivers for equipment interfacing,

information base availability.

7) APIs, parsers, GUI libraries and so forth

Inclusion: The language ought to have adequate inclusion to

be valuable to show computer science ideas. These points

include: object arranged programming, multithreading, I/O,

versatile registering, data sets, framework level programming

and so forth.

8) Clarity and viability

A few languages are simpler for an individual to peruse,

which makes it simpler for one software engineer to team up on

another developer's code. Python, for instance, has gained

notoriety for being not difficult to peruse. It authorizes severe

space of lines to characterize its code blocks, which makes it

simple to look at a program and sort out its design. Different

languages permit space also, however as a complex decision,

not as a necessity. Conversely, Perl is a language that permits

the developer to compose similar program in various ways. In

any case, the program's motivation probably won't be promptly

obvious to another peruser. Such a program might be helpful to

compose, however hard for another person to comprehend and

alter.

9) Execution

A few languages are interpreted, and some are compiled. A

compiled program should be handled by a preprocessor,

compiler, and linker before it very well may be executed by the

computer. This particular middle of the road programming

performs lexical examination, making an interpretation of the

program into machine language. It might likewise enhance the

subsequent guidelines, searching for smart approaches to make

the program run quicker. Compiled programs ordinarily

perform better compared to interpreted projects. For example,

C, C++, and Objective-C are languages that gather to extremely

quick machine code. Computer games and framework

programming are regularly written in these languages, to extract

all of execution from the CPU. Then again, interpreted-

language programs are controlled by programming called a

mediator, which executes the program's directions without first

ordering them to machine code. Albeit the mediator some of the

time parses the program to a moderate language, bringing about

some improvement, the presentation is never pretty much as

quick as compiled machine code.

One significant advantage of interpreted languages is their

potential for intuitive turn of events. Since the whole program

shouldn't be compiled before it tends to be executed, the code

can run intuitively. You know about this in the event that you've

at any point utilized your working framework’s order line: you

enter an order and see the outcomes. Such an interface is known

as a REPL, or "read-eval-print-circle." A REPL grants you to

execute orders (or squares of orders) separately, and see the

outcomes. Stutter, Perl, Python, NodeJS, Ruby, and JavaScript

are instances of interpreted languages that can run in a REPL.

Intuitive order interfaces, for example, the Windows Command

Prompt and slam, additionally qualify as interpreted languages.

Projects in these "languages" are called cluster documents, or

shell scripts.

10) Explicit use cases

Frequently, languages are particularly acceptable at

composing explicit sorts of projects. For example, NodeJS is

intended to compose single-strung applications for the web. Its

non-obstructing document I/O licenses projects to keep

working ("not be hindered") while they trust that necessary

information will send. Another model is the R programming

language, which has practical experience in measurable

investigation. Projects written in R advantage from worked in

scientific tests and models, and apparatuses to productively

control monstrous amounts of information.

11) Simplicity of prototyping

A few languages take into account quick prototyping: the

software engineer can "begin composing," and assemble part

upon part until the program is full-fledged.

For instance, the site Reddit was initially written in Lisp.

After Reddit dispatched, the whole site was revamped in Python

for some reasons, both specialized, and strategic. Despite the

fact that refactoring all the code was a significant endeavor, the

site's proprietors communicated no Second thoughts. In a 2005

blog entry, they commented that Lisp permitted them to make

something without knowing precisely what it would turn into.

12) Accessible libraries

Ordinarily, when you start another programming project, you

would prefer not to re-imagine the wheel. That is, you would

prefer not to compose capacities for normal errands like

computing a square root, or tracking down the primary event of

a person in a string. Thus, practically every programming

language gives a bunch of standard libraries of normal

capacities. Software engineers might favor a language on

account of the libraries it gives. For example, the C standard

libraries give exceptionally performing capacities to some low

even out framework activities. Perl gives numerous powerful

libraries, and furthermore the CPAN store of modules to be

downloaded and utilized in your program. Python gives a wide

exhibit of implicit capacities and modules for nearly absolutely

everything. Clojure, a Lisp-like language that sudden spikes in

demand for the JVM, benefits from its capacity to run code from

the broad existing libraries of Java items and techniques.

13) Security

Not all languages loan themselves to composing safe code.

The C programming language, for instance, is infamous for

having provisions (or scarcity in that department) that lead to

obliterating weaknesses, for example, invalid pointer

dereferencing. Different languages attempt to address these

worries with stricter principles. For example, a few languages

place limitations on what activities can be performed on

S. Mehra et al. International Journal of Recent Advances in Multidisciplinary Topics, VOL. 2, NO. 10, OCTOBER 2021 7

different sorts of information. The strictest of these languages

are in some cases called "specifically," and they can offer

significant serenity to software engineers who focus on security

and solidness in programming improvement. Instances of

specifically languages incorporate Rust, Nim, Ocaml, and

Haskell. Languages may likewise put restricts on "variability,"

the capacity of an information object to change state. Rather

than objects whose qualities are overwritten, these languages

favor "permanent" objects: values in memory that can't be

changed without unequivocal special case. Unchanging articles

have drawn in revenue as multi-center CPUs have become

broad, due to their propensity to advance "string security." In a

string safe program, more than one processor might work on

one bunch of information with an extraordinarily decreased

danger of blunder. Languages that focus on changeless items

incorporate Rust and Conjure.

14) Local area support

When programming in another language, it assists with

getting to a functioning, enthusiastic local area of designers

who effectively utilize and add to one another's work. Prior to

picking a programming language, discover more with regards

to that language's local area. A few languages have an

invigorating, dynamic, energetic client base you should be

important for and different languages might have almost no

local area.

15) Expressiveness

When composing a program, the software engineer's musings

and critical thinking capacities are “communicating in" through

that language. Thus, software engineers will in general favor

languages where they are happy with articulating their thoughts.

What makes a language and software engineer function

admirably together is difficult to characterize, notwithstanding.

Eventually, the best way to know which language you are

alright with is to utilize various languages for various activities

and look at them for yourself.

4. Results and Discussion

In view of the above conversation, it tends to be presumed

that Java is the best broadly useful programming languages to

be utilized for teaching computer science ideas. It has great

writability, unwavering quality, market interest and can be

utilized to show any computer science idea like working

framework, portable processing and so forth Other than Java,

C# can likewise be utilized to show computer programming.

Languages, for example, Pascal and GW Basic had been

utilized broadly to show introductory level course, however are

presently not sought after in market, nor would they be able to

be utilized to execute current ideas of computer science like

agents, plan examples and article situated programming and so

forth

5. Conclusion

In this paper, an investigation of significant programming

languages of computer science is finished. The paper looks at

the chose languages dependent on various factors like their

clarity, writability, support, market interest and inclusion. It has

been inferred that Java is the most fitting language to be utilized

for teaching computer science ideas.

References

[1] https://www.juniorcoders.ca/blog/why-are-there-so-many-programming-

languages/

[2] https://initialcommit.com/blog/why-are-there-so-many-programming-

languages

[3] https://www.computerhope.com/issues/ch000569.htm

[4] Robins, A., J. Rountree, and N. Rooftree Learning and Teaching

Programming: A Review and Discussion. Computer Science Education,

vol. 13, no. 2, pp. 137-172, 2003.

[5] Milne, I. and G. ROWE Difficulties in Learning and Teaching

Programming— Views of Students and Tutors. Education and

Information Technologies, vol. 7, no. 1, p. 55-60, 2002.

[6] Davies, S., J.A. PolackWahl, and K. Anewalt A Snapshot of Current

Practices in Teaching the Introductory Programming Sequence.beligin,

pp.23, 2011.

[7] Schulte, C. and J. Bennedsen. (2009), What do teachers teach in

introductory programming?, IEEE conference proceeing,pp.58-65.

https://www.juniorcoders.ca/blog/why-are-there-so-many-programming-languages/
https://www.juniorcoders.ca/blog/why-are-there-so-many-programming-languages/

