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Abstract: Ensuring the safety operation of hazardous materials 

transport is critical. Many previous works have reported various 

method to promote safety, while in this work, we identified and 

explored an overlooked aspect that affect the safety -- the real-time 

road conditions. For example, the slippery wet road or road with 

holes cause accidents for hazardous materials transport.  

Therefore, we argue that it is necessary to monitor the road 

conditions in real-time, and computer vision algorithms can make 

it possible. The advances in computer vision techniques shed light 

on the realm of road condition assessment. We reviewed and 

compared existing algorithms in this work. We also listed the 

existing road condition datasets and provided insights into how to 

apply the monitoring process with the safety framework of 

hazardous material transport.  
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1. Introduction 

Hazardous chemicals, including compressed and liquefied 

gases, flammable liquids, flammable solids, spontaneous and 

wet flammable substances, oxidants and organic peroxides, 

drugs and corrosives, are essential in everyday life. It is well 

known that the transport of dangerous chemicals is high-risk 

and, in the event of an accident, is likely to result in mass death 

and injury, leading to serious social repercussions.[1]-[3] 

Hazardous chemicals are highly susceptible to dangerous 

accidents during transportation because they can be affected by 

various factors. Therefore, when implementing the work of 

transporting hazardous chemicals, it is important to take into 

account the actual situation and increase the efforts to 

implement safety management work so as to ensure the safety 

of transporting hazardous chemicals. 

Past work has described a number of measures to improve 

safety levels in the transport of dangerous chemicals [4]-[6], 

such as strengthening staff training and vehicle management, 

using GIS methods for careful route planning, and even adding 

intelligent systems for the safe monitoring and control of the 

transport of dangerous chemicals to achieve timely and 

effective monitoring of the safe transport of dangerous 

chemicals, which can be done at the first instance by means of 

video of transport vehicles, drivers and the specific situation of  

 

the goods. [7] The specific situation of transport vehicles, 

drivers and goods can be transmitted to the supervision centre 

through video, thus playing an active and effective role in 

protecting the lives of transport staff and the safe transport of 

dangerous chemicals. 

However, in order to ensure good safety during the transport 

of dangerous chemicals, it is most important to strengthen the 

safety management of transport roads to avoid dangerous 

accidents and to improve the stability of the transport of 

dangerous chemicals. The existing methods of monitoring road 

conditions and video feedback do not reflect well the 

information on the road surface during the driving process. In 

fact, we would like to point out that the condition of the 

pavement itself is also crucial to formal safety. [8] Common 

pavement distresses include transverse cracks, longitudinal 

cracks, rutting, waves, potholes, delamination and leaks. [9], 

[10] Transverse cracks tend to appear more readily than 

longitudinal cracks and can develop from a crack less than 0.5 

mm wide and 2 cm deep. Such cracks are difficult to see in 

sunny weather, but are detectable after rain. This is because 

while the surface water evaporates, water remains in the crack. 

Small cracks need to be treated promptly to prevent them from 

developing into large cracks. Large cracks are often more than 

1 mm wide and 5 cm deep and can be several metres long. If 

large cracks are not sealed, delamination and shrinkage can 

ensue. If the bond between the pavement and the concrete slab 

is reduced, the overlay can debond from the concrete slab 

surface. Most potholes caused by cracks or leaks are the result 

of reduced adhesion. Localised delamination may extend over 

a few square centimetres, but such cracks are difficult to detect 

as the road surface remains intact. Large delaminations may 

develop into large cracks in the pavement and eventually lead 

to large potholes and breakdowns. Hazardous chemicals may be 

sensitive to such vibrations and extra care needs to be taken. In 

addition to cracks, water is another factor that can affect driving 

safety. In the rain, drivers' vision clarity is reduced, tyre friction 

with the ground is reduced and the road surface is complicated 

by water, which can not only cause the vehicle to stall if it 

inadvertently enters deep water, but can also endanger the lives 

of the vehicle owner and passengers. [11] Therefore, a method 
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is needed that can detect the road surface in real time to promote 

driving safety. In the following article we will first review some 

of the methods and corresponding data for assessing road 

conditions before pointing out the possibilities of combining 

these methods with the transport of dangerous chemicals. The 

work in this paper will provide yet another dimension in the 

advancement of safety in the transport of dangerous chemicals. 

2. Method of Road Condition Assessment with Visual Clue 

Recent years witnessed the rapid development of computer 

vision technologies. Neural networks have made great strides 

in computer vision and have demonstrated powerful advantages 

in a wide range of image classification and tracking tasks [12]-

[16], road information understanding [17]-[19], and even the 

transport of hazardous materials [20], [21]. Not much work has 

been reported about road safety assessment, and the following 

is an overview of some of the work that is informative. 

Dewangan et al. [22] carried out a pavement four-

classification task: dry, rough, ice, wet, adding a dense layer 

and upsampling on top of the general CNN. Cheng et al. [23] 

carried out a pavement five-classification task by self-designed 

CNN: distinguishing between dry, wet, snow, mud, and other 

categories, where some improvements were made to the 

activation function. [23] carried out a pavement binary 

classification task using SqueezeNet: dry/wet, day/night, 

above-zero temperature/below-zero temperature; for three 

binary classification tasks (for complex environments), a six-

dimensional vector was output directly using softmax. [24] 

carried out a more detailed assessment of road surface 

conditions by dividing the road classes into six categories. The 

article first uses ROI to select regions of interest and then uses 

CNN to classify them. The article also mentions that the idea of 

road type classification can be extended using CNN to further 

evaluate the friction coefficient of the road surface. [25] 

measures the friction of the road (corresponding to the type) that 

is related to many parameters (which can be obtained through 

experiments), and different types of roads have more obvious 

distinctions in terms of friction coefficients, etc. Therefore, this 

phenomenon can be used to develop a decision tree and further 

optimise the output of the neural network to determine the final 

result. The overall process of the algorithm is as follows: firstly, 

the neural network accepts four parameters such as friction 

coefficient and vehicle speed as input, outputs the road 

coefficients, and then determines the final road type based on 

the value of this output. The abovementioned works provide 

valuable tools in road assessments and can be readily applied to 

hazardous material transportation. 

3. Datasets for Road Assessment 

Although the above-mentioned learning-based algorithms 

can capture the feature information of images more effectively 

than the traditional methods to promote higher accuracy road 

condition assessment, they all rely on high-quality training data. 

This training data needs to be general enough to cover a wider 

range of situations. At present, there are still few publicly 

available relevant road condition datasets. 

Some of the work uses publicly available road datasets such 

as RobotCar [26] and KITTI [27] for re-labelling, with the latest 

released KITTI-360 dataset [28] is also available as an option, 

where the RobotCar dataset contains over 100 consistent routes 

through Oxford, UK, captured over a period of over a year. The 

dataset captures many different combinations of weather, traffic 

and pedestrians, as well as long-term changes such as 

construction and roadworks. There are also datasets that 

specifically include road surface characteristics, such as [29], 

which contains roads of different surface types: asphalt 

changes, other types of pavement, and even unpaved roads. It 

also includes road damage (e.g., potholes). These images were 

taken from a moving vehicle in the cities of Á GUAS mornas 

and Santo Amaro Da Imperatriz near Florianopolis, Santa 

Catalina, Brazil. These data These data provide an important 

contribution to the use of machine learning methods for road 

assessment. It is important to note that some of the data 

augmentation methods adopted in other fields could be used, 

such as Domain Adaptation or augmenting the data by methods 

such as GAN [30]. 

4. Conclusion and Discussion 

Ensuring the safe transport of dangerous chemicals is a very 

important matter. Much past work has given ways of improving 

the safety of the transport of dangerous chemicals. In this paper 

we point out that in addition to the consideration of road 

conditions and road network conditions. We further point out 

that the road conditions on which vehicles are travelling can be 

monitored in real time, and that possible unsafe situations can 

be warned and communicated to the command centre as a basis 

for subsequent route arrangements. This monitoring can even 

be combined with assisted driving systems to help the driver to 

better control the vehicle. This paper reviews relevant research 

on the use of machine learning methods for road situation 

recognition, as well as some of the current datasets. It is noted 

that these methods provide a useful tool for monitoring road 

conditions while hazardous chemical vehicles are in motion. In 

the future, more datasets will need to be captured to allow for 

better generalisation of the network. More lightweight real-time 

algorithms will also need to be developed to enable real-time 

road condition detection and transmission at edge devices in 

real time. Road detection swarms consisting of large numbers 

of vehicles could even provide urban infrastructure providers 

and road builders with a real-time basis for information about 

roads. 
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