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Abstract: Timekeeping, via a discrete tick-based system, is a 

commonly utilized approach for determining the ordered 
progression of turns, within both the simulation and gaming 
contexts. Presented in the subject work are the mathematics that 
underlie such a timekeeping system. This presentation is made 
within the context of a very popular game, RAID: Shadow 
Legends. Within this context, the specific instantiations of speed, 
tick rate, turn meter, speed divisions and critical turn meter value 
are used to show the transformation of continuous variables into 
discrete variables with either stepwise continuous values or 
discrete integer values. When coupled with a simple series of rules 
that establish the criteria for winning turn meter and which dictate 
a lack of simultaneous turns, the resultant system is shown to be 
one in which conflicts at contested ticks are resolved in a pairwise 
and sequential manner, regardless of the number of combatants 
involved.  Presented in the theory section is the mathematics, based 
upon modular arithmetic, which is used to determine the 
relationship between ticks and turns. The solutions are presented 
in multiple forms, including those based upon using integer 
sequences and generating functions. Numerical examples are 
provided to aid in the understanding of the application of the 
presented theory.  

 
Keywords: game timekeeping, generating functions, integer 

sequences, modular arithmetic, tick based timing, RAID: Shadow 
Legends.  

1. Introduction 
Axiomatically, it can reasonably be stated that most 

individuals with the capacity for abstract thinking have a 
conception of the term time.  One may further state that these 
conceptions, when viewed collectively, do not necessarily tend 
towards congruence but rather tend towards divergence. This 
divergence arises, in part, as a function of the contexts within 
such conceptions are incubated.  One may seek to resolve such 
divergences by turning to a formal evaluative framework, such 
as the one proposed by Gallie for addressing essentially 
contested concepts [1], [2]. Alternatively, one may take into 
consideration lexical definitions of a term under consideration 
or seek some other approach (singularly or in combination).   

In regards to the first approach, the term fails to meet the 
requirements of the specific framework. Generally, the use of 
such frameworks far exceeds the necessary considerations of 
the subject work, except for introductory purposes. In regards 
to the second approach, one must first note that lexical 
definitions do not carry the air of authority simply due to their 
lexical character.  The converse of this statement represents an 
instantiation of the fallacy of (informal) logic of false appeal  

 
to (false) authority. With this caveat in place, one finds such 
definitions as being unappealing secondary to their circular 
character. As an example, the Oxford English Dictionary [3] 
defines the term as ‘a finite extent or stretch of continued 
existence, as the interval separating two successive events or 
actions, or the period during which an action, condition, or 
state continues.’ Here, the terms finite, continued, interval, 
successive and period, in the very least, require definitions that 
are predicated upon the term, time, and thereby render the 
definition of the term, itself, as circular.   

We may readily set aside the Sisyphean task of seeking a 
ubiquitously applicable definition of the term, time, along with 
the incumbent vicissitudes of semiotics, by singularly 
stipulating a definition to the extent that such is needed.  For the 
subject work, we are interested in time as it applies intrinsically 
to combat in digital games (while not explicitly excluding 
analog games or simulations) and specifically as a metric for 
the passage of which leads towards a change in the system 
manifested by one or more combatants being granted the ability 
to exercise actions. In such a setting, the interest in time lies 
within tracking a measure of the same, as a metric, for the 
purpose of timekeeping. 

In a slightly simplified view, timekeeping systems can be 
classified as either being sufficiently continuous or discrete.  
The modifier on the first categorical description alludes to the 
fact that the timekeeping system may actually be discrete but 
operates in a manner such as to appear to be continuous to a 
human participant. Such systems may, in turn, be predicated 
upon ‘real time’ or an in-game equivalent. For the subject work, 
such timekeeping systems are not germane.  Instead, the context 
is limited to digital timekeeping. A number of texts on game 
design provide qualitative information in regards to combat, 
with general references to timekeeping, but do not provide the 
details of the mathematics involved with implementing such 
systems [4]-[14]. 

For the subject work, the concept of a discrete timekeeping 
system is done by ensconcing the presentation within the further 
confines of one specific game.  This approach, while requiring 
some additional introductory information that is game specific, 
has the potential benefit of crystalizing the presentation within 
an actual in-use situation. The game chosen for the subject work 
is RAID: Shadow Legends (RSL), developed by Plarium 
Global Ltd., a component of the Pixel United subdivision and 
subsidiary of Aristocrat Leisure Limited. This choice was made 
due to the following: the entire focus of the game is on combat, 
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the combat timekeeping system fits the mechanic of interest, 
sufficient empirical data exists for parameter estimation, the 
longevity of the game and the status of the game as the top 
grossing game in the role-playing game (RPG) category (as per 
Sensortower.com as of the time of the writing of the subject 
work). 

The game specific background, presented herein, is strictly 
limited to the points of relevance for the subject work and does 
not, by any means, serve as a summary of the game, en toto.  In 
brief, the game involves collecting fictional characters 
(champions) and increasing their efficacy in regards to and by 
completing game content (all of which either directly involves 
combat or is directly focused on increasing combat efficacy).  
The champion archetype is reducible to the following 
prescribed (immutable to player modification) characteristics: 
name, faction, rarity, affinity, base combat statistics and skills.  
The term tribe is sufficiently synonymous with faction. The 
rarity of a champion fits into one of the categories ranging from 
common to mythic (a total of six categories). Champion affinity 
refers to a rock, paper scissors type mechanic coupled with a 
neutral option.  The term combat statistics, while being 
redundant, refers to eight distinct statistics, of which speed is 
the most germane. Each champion has a prescribed set of skills, 
all uniquely named, but all mapping to particular skills from an 
underlying pool (the skills in the pool can be classified as 
combat instants, combat buffs or combat debuffs) and most 
with a requirement of useability once every certain number of 
turns (i.e. skill cooldown).  Any given player can have multiple 
copies of most champions and any given number of players can 
have the same champion.  While the game has hundreds of such 
champions, customizability is limited as is any role-playing (the 
game also lacks any overarching story line). 

The game provides two categorical combat scenarios – 
player verses environment (PVE) and player verses player 
(PVP).  In both cases, a player selects a number of champions, 
from the pool of champions that they possess, for use in the 
combat scenario in question. The range for the number of 
champions that a player may use for any instance of engaging 
in a combat scenario is dictated by the scenario.  The PVE 
content is prescribed in regards to both the opponents that a 
player combats, through their champions, and the combat 
characteristics of those opponents (e.g. a player attempting to 
defeat the 25th level of the dragon dungeon will always 
encounter the same computer controlled opponents, with the 
same statistics and same skills).   

The outcome of a combat scenario, for almost all cases, 
draws from one option of the binary system of winning or 
losing.  In almost all cases, winning is defined by reducing the 
health of all enemy combatants to zero while having at least one 
champion with a health amount above zero. The two exceptions 
to this, both within the scope of PVE content, involve dealing 
sufficient damage to the computer controlled opponent such as 
to win the highest level prize from a system that is tiered based 
upon the damage dealt.  The combat system, in all scenarios, is 
the same.  This specifically includes the combat timekeeping 
system. 

Combat timekeeping in the game is based on a tick-based 

timing system [15-16]. Thusly, the game employs a discrete 
time, timekeeping, system for combat. If we denote the tick 
number by the variable name, k, then: 

 0 i 1 ik : k k k 1 k+
+∈ − = ∀Z  (1) 

Stated in the first part of equation (1) is that the ticks are a 
subset of positive integer values and zero. Stated in the second 
part of this equation is that the difference between any two 
successive ticks, for all ticks, is unity (i.e. one). While the 
discrete tick based timekeeping system is fundamental to 
combat, the tick count, during any combat scenario, is not 
visible to the player. The terms ticks and turns are not 
synonymous.  A turn, for a given combatant, is the point in time 
when they perform an action.   

There are two parameters, both visible to any given player, 
in part, that are salient to determining the ticks at which any 
given champion is granted a turn. The first is the speed of the 
champion. This is a continuous variable that can readily be 
calculated based upon the base speed of the champion, speed 
granted by equipment, skills, etc. The calculation, itself, is not 
germane to the subject work. The speed, for any given 
champion, that is displayed to a player is a rounded integer 
value of the actual continuous variable (referred to as ‘true’ 
speed within the vernacular of the game). The second parameter 
is the turn meter for each champion. This is displayed, during 
combat, for each champion, as a bar that visibly fills until a 
champion is granted a turn, drops to zero when the turn is taken 
and then starts to refill. This process continues to the 
completion of the combat scenario. As a variable the turn meter 
(TM) value is a continuous variable. The displayed value of any 
given TM has a lower range of zero and an upper range of unity 
(i.e. 100% normalized to a decimal percentage by dividing by 
100%).  The actual value of the TM can exceed unity. 

There are five general rules that govern the parameters of 
interest.  These are enumerated as follows: 

1. Only one combatant is granted a turn at any given time.  
There are no simultaneous turns. 

2. Obtaining a turn at tick k requires winning turn meter at 
tick k – 1. 

3. Turn meter is won by a given combatant when (a) the 
value of their turn meter is either greater than or equal to 
unity and (b) the turn meter value for that combatant is 
greater than the turn meter of all other combatants. 

4. For a combatant that wins turn meter at tick k – 1, at tick 
k, the turn meter for that champion is reduced to zero, 
that champion takes a turn and then the turn meter for 
that champion is partially filled. 

5. For a combatant that meets the first condition of (3) but 
not the second, the turn meter for that champion is 
increased by the applicable amount at tick k – 1, 
irrespective of whether or not the resultant exceeds unity.  
The displayed value of the turn meter for that combatant, 
however, remains at unity. 

The rules enumerated above are predicated upon the salient 
parameters having differing values for all combatants. When 
the parameters are the same for combatants on opposing teams, 
the combatant on the team initiating the combat will have 
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preference. When the parameters are the same for combatants 
on the same team, the order follows the formation order. These 
are simple deterministic rules and are not considered herein. 
The tick-based combat timing system, coupled with the 
enumerated rules, takes the continuous variables of speed and 
turn meter, and uses them to generate discrete turns.  The 
objective achieved by the subject work is explaining the 
underlying mathematics of this type of combat system, within 
the specific instantiation of RSL. 

2. Theory 
A comprehensive Glossary of Symbols and Terms is 

provided at the terminus of this work.  The first step in the 
process of developing the underlying theory is relating the 
continuous variables of speed (s) and turn meter (TM).  This is 
achieved by defining the tick rate (τ), which has empirically 
[17] been determined to be a linear function of speed.  For the 
ith combatant (the set of all champions of a player within a 
combat scenario and the opponents), this relationship is defined 
as (the use of the ∙ symbol denotes standard multiplication 
rather than a vector dot product): 

 1
i ic s−τ = ⋅  (2) 

In equation (2), the parameter c is a constant with a nominal 
value of the nominal value of 100/0.07.  When rounded to six 
digits of precision, this constant has an approximate value of 
1428.57. The apparent range of values for this constant is 
1428.56 to 1428.84 [17]. The nominal value is used in 
calculations in this work.  The units of this constant are either 
(speed ∙ tick) / decimal percentage turn meter or tick / decimal 
percentage turn meter. The former is predicated on treating the 
variable, speed, as having units of ‘speed’ while the latter treats 
the variable, speed, as being unitless.  In either case, the units 
of tick rate are decimal percentage turn meter per tick.  In 
equation (2), si < c for the range of all actual speeds and thusly 
τi < 1 for all actual cases.  Finally, since both c and si are 
continuous, τi is also continuous.   

For any tick rate, we may readily determine the number of 
ticks that it would take for the corresponding TM to value a 
minimum value of unity (i.e. one).  As an example, if the tick 
rate was 0.250, it would take four ticks for the corresponding 
TM to be at unity.  More, generally, however, the number of 
ticks required to meet the first component of the criteria listed 
in the third rule results in a corresponding TM value that is 
greater than unity.  The number of requisite ticks is clearly a 
discrete variable (given that it is measured upon discrete ticks) 
and can be determined by taking the ceiling (i.e. rounding up to 
the nearest integer value) of the inverse of the tick rate.  In the 
parlance of the game, this is referred to as the speed division 
(σ).  For the ith combatant (the bottom open brackets denote the 
ceiling operation): 

 1 1
i i ic s− −   σ = τ = ⋅     (3) 

The mathematical operation shown by equation (3) functions 
as a method for discretizing speed by taking the integer part of 

values of a constant divided by different speeds and adding one 
to the resultant.  It should be apparent that the speed division 
only has positive integer values. Stated succinctly, {σi: σi ∈ ℤ+ 
∀σi}. It should also be apparent that speed values and the 
corresponding speed divisions are inversely related (i.e. higher 
speeds map to lower speed divisions and vice versa). 

From the last two equations, we may also readily calculate 
the value of the turn meter that represents the first value that 
either equals or exceeds unity. We term this the critical turn 
meter value.  For the ith combatant: 

 1 1 1
ci i i i i i iTM c s c s− − −   = τ ⋅σ = τ τ = ⋅ ⋅     (4) 

Each speed division, except for speed division one, has a 
specific value of speed that serves as an inclusive lower 
boundary and a specific speed value that serves as an exclusive 
upper boundary.  For the jth speed division {j: j > 1}. 

 ( ) 11
j jc s c 1

−−⋅σ ≤ < σ −  (5) 

The exclusive nature of the upper boundary derives from the 
fact that any given speed only falls into one speed division and 
that the upper boundary represents the lower boundary for the 
next speed division. The boundary speed values and boundary 
critical turn meter values are shown, for speed divisions 2-20, 
in Table 1 (the lower limits for the critical turn meter are exact 
while the speeds and upper limits for the critical turn meter are 
approximate). 
 

Table 1. 
Lower (inclusive) and upper (exclusive) speeds and critical turn meter values 

per speed division for speed divisions 2 – 20 
s s (lower) s (upper) TMc (lower) TMc (upper) 
2 714.286 1428.571 1 2.000 
3 476.190 714.286 1 1.500 
4 357.143 476.190 1 1.333 
5 285.714 357.143 1 1.250 
6 238.095 285.714 1 1.200 
7 204.082 238.095 1 1.167 
8 178.571 204.082 1 1.143 
9 158.730 178.571 1 1.125 
10 142.857 158.730 1 1.111 
11 129.870 142.857 1 1.100 
12 119.048 129.870 1 1.091 
13 109.890 119.048 1 1.083 
14 102.041 109.890 1 1.077 
15 95.238 102.041 1 1.071 
16 89.286 95.238 1 1.067 
17 84.034 89.286 1 1.063 
18 79.365 84.034 1 1.059 
19 75.188 79.365 1 1.056 
20 71.429 75.188 1 1.053 

 
There are a number of simple observations that one can 

readily make from Table 1. The first is the range of speeds for 
any given speed division decreases as the speed division 
increases. The second is that the lower limit for the critical turn 
meter, for each speed division, is exactly unity.  The third is that 
for any two differing speed divisions, there exist values of speed 
for the lower speed division (faster speed) that result in a lower 
critical turn meter value than the critical turn meter value of a 
slower combatant (from a higher speed division).  
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At ticks on which turn meter is contested between the two 
combatants, the slower combatant would win turn meter. 

A.  The case of two combatants 
The case of two combatants is worthy of consideration, not 

only in its own right, but also due to the fact that for the case of 
any N combatants, the determination of combatant preference 
for ticks on which turns are won is based upon a sequential 
pairwise comparison.  An alphabetic subscript on σ refers to the 
speed division without consideration of ordering while a 
numerical subscript refers to the order of the combatant based 
upon critical turn meter value. 

Turn numbers are indicated by the letter n coupled with a 
double subscript.  The first subscript identifies the combatant.  
The second subscript, when not in parentheses, identifies a 
specific turn number.  Thusly, the notation of nip means the pth 
turn of the ith combatant.  When the second subscript is within 
parenthesis, it identifies the turn at which the quantity within 
the parenthesis is valid.  Thusly the notation of ni(a) means the 
turn at which some quantity, a, occurs or is achieved, for the ith 
combatant. This subscript system also holds for the case in 
which the combatant identifier is numerical rather than 
alphabetic.  The domain for all turns is {n: n ∈ ℤ0

+}. 
All references to the relationship between tick value and turn 

number are specifically in regards to the tick number for which 
turn meter is won for the taking the turn. The latter simply 
occurs at the tick immediately subsequent to the tick on which 
turn meter was won for taking the turn.  The term nominal or 
the phrase nominal relationship specifically refers to the tick 
value to turn number relationship, for a combatant, in isolation 
from all other combatants and prior to any modification.  This 
nominal relationship, for the tick on which the pth turn is won 
by the ith combatant, is given by the following simple, discrete, 
linear equation.   

 i ipk n= σ ⋅  (6) 

It is important to note, in equation (6), the independent 
parameter is the tick number (k) and the dependent parameter 
is the turn number (nip).  This statement holds due to the fact 
that the tick number is a common parameter across all 
combatants.  This form can be contrasted against the standard 
form of y = f(x), where x is the independent parameter, f(x) is a 
function of the independent parameter and y is the dependent 
parameter.  The subject form was chosen due to the fact that 
speed divisions appear as integer values rather than as fractional 
values in the form of 1/σi. 

Contextually, the speed divisions of interest range from 
approximately 20, for the slowest speeds, to approximately 
three, for the maximum theoretical achievable speed.  These 
limits do not impact upon the mathematical development 
presented in this section but are worthy of note in regards to the 
context. 

1) The case of equal speed divisions 
In considering the various pairwise speed division 

compositions, there is one categorical case in which the actual 
speeds of the combatants requires direct consideration.  That is 

the case when σi = σj = σ. When both combatants operate within 
the same speed division, the first contested tick, k = k1 = σ ∙ ni1 
= σ ∙ ni2, occurs for the first turn for both combatants.  In this 
case, based upon equation (4), the combatant with the higher 
speed statistic wins turn meter.  Thusly, the nominal 
relationship of k = σ ∙ n1p ∀n1p holds for that combatant while 
the relationship for the opposing combatant changes to k = σ ∙ 
n2p + 1 ∀n2p.  There are no subsequent ticks at which turn meter 
is contested after the first instantiation.   

2) Preliminaries for differing speed divisions 
The case of equal speed divisions for any pair of combatants 

is an important case, albeit one that is mathematically trivial. 
All other cases of interest are predicated upon σi ≠ σj.  In this 
regard, it is useful to consider the relationship between the 
product of two positive integers, the greatest common divisor 
(gcd) of the integers and the least common multiple (lcm) of the 
integers.   

 ( ) ( )i j i j i jgcd , lcm ,σ ⋅σ = σ σ ⋅ σ σ  (7) 

The first tick at which turn meter is contested between two 
combatants, by definition, occurs at the same tick value, for 
both combatants, albeit at different turn numbers, for each 
combatant, and with the turn number being a function of the 
combatant’s speed division.  If this tick value is denoted as k = 
k1, it can readily be seen that the following holds. 

 ( ) ( )
i j

1 i j
i j

k k lcm ,
gcd ,

σ ⋅σ
= = σ σ =

σ σ
 (8) 

The validity of this equation can be seen by the following.  
When σi and σj are coprime, gcd(σi, σj) = 1, and the first 
contested tick occurs at a tick number that equals the first 
multiple of the speed divisions. When σi and σj are not coprime, 
they share a common integer divisor, ξ, that is greater than 
unity.  This allows for each speed division to be written as an 
integer multiple of the common integer divisor.  Thusly, σi = ai 
∙ ξ and σj = aj ∙ ξ.  In the case where there is one common integer 
divisor that is greater than unity, then by definition, ξ = gcd(σi, 
σj).  If there are more than one common integer divisors that are 
greater than unity, than ξ can be chosen such that it is the 
highest valued among all of the common divisors.  Substitution 
into equation (8) leads to the solution of k = k1 = lcm(σi, σj) = 
ai ∙ aj ∙ ξ. 

Since the tick number for the first contested tick is the same 
for both combatants, it is a simple statement that the difference 
in the value of that tick, as calculated from the speed division 
and turn number of each combatant, is zero. This can be shown 
by using equation (6). 

 ( ) ( )1 1i ji k j kn n 0σ ⋅ − σ ⋅ =  (9) 

Equation (9) is a single linear equation with two unknowns, 
which are the two turn numbers.  An equivalent description of 
this equation is that it is a first order polynomial equation with 
two unknown integer coefficients. This description fits a 
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standard description of linear Diophantine equation [18].  For 
such equations, in which the constant term (i.e. the term not 
multiplied by a polynomial variable) is zero valued, obtaining a 
solution for the equation can readily be done by simple 
inspection.  Here, the use of equation (8), directly leads to the 
following solutions. 

 
( )

( )
( )

( )
( )

( )

1

1

i j j
i k

i i j

i j i
j k

j i j

lcm ,
n

gcd ,

lcm ,
n

gcd ,

σ σ σ
= =

σ σ σ

σ σ σ
= =

σ σ σ

 (10) 

The adjudication of the conflict at the first contested tick 
leads to the following results. For the combatant with the higher 
critical turn meter value, the nominal relationship is retained for 
all turns (this follows from the rules that were enumerated in 
the introductory section). 

 1 1p 1pk n n= σ ⋅ ∀  (11) 

For the combatant with the lower critical turn meter value, 
the relationship between ticks and turns becomes bifurcated. 

 ( ){ }12 2q 2q 2q 2 kk n n :1 n n 1= σ ≤ ≤ −  (12) 

 ( ) ( ){ }12 2q 2q 2q2 k 2k n 1 n : n n n= σ + ≤ ≤  (13) 

In equation (13), the upper limit of the domain has been 
shown as n2() due to the fact that there may or may not be a 
mathematically finite upper limit. The solution to this problem 
is obtained by evaluating the solution at a potential second 
contested tick.  As with the first contested tick, the potential 
second contested tick would occur when the tick values are the 
same.  Unlike the first contested tick, which was based on the 
two nominal relationships, the potential second contested tick 
would involve equations (11) and (13).  Letting this potential 
value be k = k2 it is again noted that the difference in the tick 
value based upon equations (11) and (13) must be zero.  
Carrying out this operation followed by algebraic 
rearrangement leads to the following result. 

 ( ) ( )2 21 21 k 2 kn 1 nσ ⋅ = + σ  (14) 

3) Speed divisions with common divisors 
The form of equation (14) allows for the introduction of 

Bezout’s identity, which states, in part, that if d is the greatest 
common divisor of two integers η1 and η2 then there exist 
integers ζ1 and ζ2 such that η1 ∙ ζ1 + η2 ∙ ζ2 = d = gcd(η1, η2).  
Here, d, is the minimum integer value and with all other values 
being integer multiples of d.  Comparing this identity to 
equation (14) shows that there only exists a second contested 
tick if gcd(σ1, σ2) = 1. This leads to the following two 
conclusions (both are functionally equivalent).  The first is that 
there only exists contested ticks beyond the first contested tick 
if σ1 and σ2 are coprime.  The second conclusion is that if there 
is a common divisor between σ1 and σ2 that is greater than one, 

then there are no contested ticks beyond the first contested ticks. 
For the second statement, we can rewrite equation (13) as: 

 ( )

{ }
12q 2q2 k

2 2q
1 2

n : n n
k n 1

gcd , 1

≤  = σ +  
σ σ >  

 (15) 

4) Preliminaries for coprime speed divisions 
This leaves one class of binary speed division pairings, that 

being those that are coprime, for further consideration. For the 
coprime case, we can readily specify the turns, for each 
combatant, at which the first conflict occurs. 

 ( ) ( )2 11 k1 2 k1n n= σ = σ  (16) 

We proceed by noting that equation (14) can be written as a 
congruence relationship. 

 
( ) ( )

( ) ( )
2 2

2

1 21 k 2 k

1 21 k

n 1 n

n 1 mod

σ ⋅ = + σ ⇔

σ ⋅ ≡ σ
 (17) 

In equation (17), the symbol ≡ denotes congruence and the 
parentheses mean that mod σ2 applies to both sides of the 
equation. There are a number of identities that are useful when 
it comes to evaluating congruence relationships of this kind.  
For {b1, b2, b3, b4} ∈ ℤ: 

 ( )1 3 2 3 4b b b b mod b+ ≡ +  (18) 

 ( )3 1 3 2 4b b b b mod b⋅ ≡ ⋅  (19) 

 ( )3 1 3 2 3 4b b b b mod b b⋅ ≡ ⋅ ⋅  (20) 

For {b1, b2, b3, b4, b5} ∈ ℤ and {0 ≤ b4 ≤ b5}: 

 ( )1 3 2 4 5 5b b b b b mod b⋅ ≡ ± ⋅  (21) 

For {b1, b2, b3, b4} ∈ ℤ, when ‘dividing’ b1 ≡ b2 (mod b3) by 
b4, the modulus must be divided by gcd(b3, b4). Finally, we note 
that for {b1, b2, b3} ∈ ℤ, b1 ∙ b2 ≡ 1 (mod b3) will have positive 
solutions for the modular multiplicative inverse b2

-1 (mod b3) if 
b1 and b3 are relatively prime.   

5) Coprime speed divisions with σ1 treated as fixed 
For this section we treat σ1 as fixed in that we are comparing 

any singular value of σ1 against multiple values of σ2.  In this 
regard, we view σ2 as a first order polynomial (i.e. linear 
function) of σ1 where {α12, β12 ∈ ℤ0

+}: 

 2 12 1 12σ = α σ + β  (22) 

Equation (22) can be substituted into either equation (14) or 
into the congruence relationship of equation (17).   

 ( ) ( ) ( )

( ) ( )( )
2 2

2

1 12 1 121 k 2 k

1 12 1 121 k

n 1 n

n 1 mod

σ ⋅ = + α σ + β ⇔

σ ⋅ ≡ α σ + β
 (23) 

One may readily solve for the turns for each combatant from 
either equation under (17).  However, using equation (23) is 
more instructive for the work here. Working with the 
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congruence form, we note that we are looking for the minimum 
valued integer, λ {λ: λ ∈ ℤ+} such that the multiple of the 
modulus and λ, followed by the addition of unity, becomes 
divisible by σ1. 

 
( )12 1 12

1

1λ α σ + β +
∈

σ
Z  (24) 

The term in the numerator, λ ∙ α12 ∙ σ1, when divided by σ1, 
is clearly integer valued. In order for the entirety of the solution 
to be an integer, however, the following must also be an integer. 

 12

1

1λβ +
∈

σ
Z  (25) 

The treatment of σ2 as a linear combination of σ1 allows for 
the making of some useful observations when the speed 
divisions are viewed as simple numbers and when we hold σ1 
fixed. We consider the case where σ1 is an integer greater than 
unity and σ2 is a non-negative integer.  Let b and b +1 be two 
successive integer multiples of σ1 (i.e. (σ1 ∙ b)/s1 = b and (σ1 ∙ 
(b+1))/σ1 = b +1).  From equation (22), it can be seen that βij = 
0 when σ2 = b ∙ σ1 and when σ2 = (b + 1) ∙ σ1.  Between these 
two speed divisions, there are exactly σ1 – 1 speed divisions.  
Furthermore, for these speed divisions, βij increases by one, 
starting at one for σ2 = b ∙ σ1 + 1, and ending at β12 = σ1 – 1 for 
σ2 = (b + 1) ∙ σ1 - 1.  Because b is arbitrary, we can map any {b, 
b +1} to {0, 1}. This approach works because equation (25) is 
a function of the remainder β12 and not the quotient α12. 
Furthermore, for any integer λ that satisfies equation (25), the 
multiple of λ and the quotient will also result in an integer. This 
observation is useful because (a) it allows for the mapping of 
problems involving large differences in speed divisions into the 
simpler problem over the domain, for α12, of {0, 1), (b) it shows 
that the remainder is limited to values between 1 and σ1 – 1, (c) 
it shows that the determination of λ follows a cyclical pattern 
in regards to σ1 and σ2, and (d) precludes the need for 
developing separate formulations for σ1 > σ2 and σ1 < σ2. 

When β12 = 1, the solution for λ can trivially be determined 
to be λ = σ1 – 1.  When β12 = σ1 – 1, the solution for λ can also 
be determined trivially and is λ = 1.  For the cases where 1 < 
β12 < σ1 – 1, we can rewrite equation (25) by noting that β12 = 
σ1 – (σ1 – β12) and 1 = σ1 – (σ1 – 1). Making this substitution 
followed by algebraic rearrangement leads to the following 
result. 

 ( ) ( ) ( )1 12 112

1 1

11 1
λ σ − β + σ −λβ +

= λ + −
σ σ

 (26) 

If λ is chosen such that the second term on the right of the 
equality in equation (26) is integer valued, then equation (24) is 
also integer valued.  While this does not provide a singular 
closed form solution for λ (any integer multiple of λ also 
produces an integer valued solution), it reduces the problem to 
one of simple inspection.  This holds not only because of the 
form of the relationship, but also because the solution set for λ, 

for 1 ≤ β12 ≤ σ1 – 1, maps on a one-to-one basis to integers from 
the same domain. 

It is instructive, at this point, to recall the purpose of finding 
λ. This parameter was the minimum positive integer that 
satisfied the requirement of equation (24), which in turn 
provided the solution for equation (23) which resulted in having 
the value for the turn, for the combatant with the lower valued 
critical turn meter, at which the second contested tick occurred. 
The value of λ is equal to the difference in the number of turns 
for the combatant with the lower valued critical turn meter for 
the turns associated with the ticks for the first and second points 
of contestation.   

While this formulation was developed based upon holding σ1 
fixed and writing σ2 as a linear combination of σ1 in such a 
manner as the coefficients of the combination were integers 
greater than equal to zero, it is apt for any pair {σ1, σ2} if α12 
and β12 are defined in a manner consistent with this formulation. 

6) Coprime speed divisions with σ2 treated as fixed 
If σ2 is treated as fixed, an approach that would be apt if one 

is comparing multiple speed divisions against a known speed 
division and with the critical turn meter value being greater for 
all comparisons when paired with the critical turn meter value 
for the known speed division, it is useful to write the other speed 
divisions as a linear function of σ2 where {γ12, δ12 ∈ ℤ0

+}. 

 1 12 2 12σ = γ σ + δ  (27) 

Following the derivation from the previous section, where κ 
{κ: κ ∈ ℤ+} is the minimum value for which the following 
holds: 

 2 2

1 12 2 12

1 1κσ + κσ +
= ∈

σ γ σ + δ
Z  (28) 

Once κ is known, the associated value of λ, as per the 
previous section, can be solved from dividing the numerator of 
equation (28) by σ1. When σ2 is fixed, there is a pattern present 
but this pattern, again, is based on λ, which requires an 
additional calculation, for its determination, than the approach 
from the previous section. This solution approach is not 
addressed further given that it can be reduced to the solution 
approach developed in the previous section. 

7) Solution based upon the ceiling function 
The previous sections have evaluated the cases of the first 

two conflicting ticks (i.e. when k = k1 and k = k2). This leads to 
the obvious questions of whether or not the value of λ informs 
us as to what happens at a potential third, fourth or any other 
subsequent point of contestation and how would one account 
for the tick-turn relationship between these points of 
contestation. For the first question, we can readily state that the 
value of λ is applicable for the number of turns between 
contested ticks, for the combatant with the lower critical turn 
meter value, for the two combatant case in which the speed 
divisions are coprime.  This statement holds for the following 
reason: the relationship between ticks and turns for the 
combatant with the higher critical turn meter value does not 
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change and the resolution at the qth {q: q ≥ 2, q ∈ ℤ} time at 
which turns are contested always results in the relationship 
between ticks and turns for the combatant with the lower valued 
critical turn meter being incremented by one when compared to 
the q-1st time at which a contestation arose. One may use this 
result to write the second equation under equation (13) for each 
such contestation by having an upper limit as being equal to the 
lower limit plus λ minus one followed by changing the lower 
limit to the previous upper limit plus one, changing the upper 
limit to the new lower limits plus λ minus one and changing the 
increment to plus two for the next case and so on.  Alternatively, 
one can use a single function that avoids this process.  This is 
done by using the fact that the turns before that at which the first 
contestation occurs are nominal and by using the ceiling 
function. 

 { }2q 1
2 2q 2q 1 2q

n 1
k n n : n

− σ + 
= σ + σ ≤ λ 

 (29) 

8) Solution based upon the mod function 
The ceiling function can be converted to a floor function due 

to the fact that the numerator and denominator are both positive 
integers. This conversion relies upon the following identity 
[19]: 

 { }6 76
6 7

7 7

b b 1b b ,b
b b

+   + −
= ∈   

   
Z  (30) 

This conversion avoids having to use a bifurcated form  
based upon whether or not the operand of the ceiling function 
is integer valued or not. Employing equation (30) leads to the 
following: 

 { }2q 1
2 2q 2q 1 2q

n
k n n : n

− σ + λ 
= σ + σ ≤ λ 

 (31) 

The utility of this conversion from ceiling to floor allows us 
to employ another identity. 

 

( )
{ }

8
8 9 8 9

9
8 9

8
8 8 9

9 9

b
b mod b b b

b
b ,b

b 1 b b mod b
b b

+

 
= − → 

  ∈
 

= − 
 

Z  (32) 

Here, b8 mod b9 denotes the remainder after b8 is divided by 
b9. It does not apply to both sides of the equation and b8 cannot 
be factored from it, in the form shown. Applying this equation 
to the previous equation leads to the following: 

 

( )
{ }

2 2q

2q 1 2q 1 2q

2q 1

k n

n n : n1
n mod

= σ

− σ + λ −  σ ≤
 +
 λ − σ + λ λ 

 (33) 

Another point, worthy of note, relates to the two special cases 
of β12 = 1, which leads to the result of λ = σ1 – 1, and of β12 = 
σ1 – 1, which leads to the result of λ = 1.  These are special 

cases because the value of λ is fixed at a known value for both 
cases.  For the second case and substituting λ = 1 into equation 
(29) leads to the following result: 

 ( ) { }2 2q 1 2q 1 2qk 1 n 1 n : n= σ + − σ + σ ≤  (34) 

Equation (34) holds for cases when σ2 + 1 is equal to an 
integer multiple of σ1. 

9) Solution based upon sequence and generating function 
Both equations (29) and (33) are alternative representations 

of the same result and both require the determination of the 
parameter λ. Presented in this subsection is another method 
(that again relies on the determination of λ). The parameter λ, 
as indicated previously, indicates the number of turns that pass 
between any two consecutive integer differences, exclusive, 
when compared to the nominal case, for the situation in which 
two speed divisions are coprime and the relationship between 
the ticks on which turns are won and the tick number are 
modified for the combatant with the lower valued critical turn 
meter.  This parameter is also equal to the number of turns over 
which a given integer difference holds. 

For the combatant with the lower valued critical turn meter, 
the difference between the modified relationship regarding the 
tick number on which turn n2q is won when compared to the 
nominal case is equal to zero for turns one to n2q = σ1 – 1. The 
difference then changes to unity for λ turns, to two for another 
λ turns and so on. While this analysis can readily start with n2q 
= 1, it is more useful to start the analysis at the first turn at which 
λ = 1 and simply substitute at the terminus of the analysis.  The 
difference in turn numbers, for the two cases, thus becomes <1, 
… repeated λ – 1 times …, 2, … repeated λ – 1 times …, 3, 
…>.  This sequence can be related to the integer coefficients of 
an infinite series such as the power series (the ordinary 
generating function). 

 
( ) r

r
r 0

2
0 1 2

A x a x

a a x a x

∞

=

=

= + + +

∑


 (35) 

The domain of x in equation (35) is |x| < 1. This, however, is 
immaterial due to the fact that there are no numerical values 
substituted into x.  Instead it is the coefficient values that are of 
relevance because they are used to encode the values of the 
difference in the turn numbers. The encoding of unity, for all 
coefficient values, for example, leads to the following result: 

 2 11,1,1, 1 x x
1 x

↔ + + + =
−

   (36) 

The formula shown in equation (36) can readily be modified 
in order to generate a different sequence. One manner of 
modification is by multiplying either equation (35) or the series 
on the right of the mapping in equation (36) by x.  Using the 
latter, it can readily be seen that the modified generating 
function is right-shifted due to the fact that all coefficient terms 
in the original function are now associated with a +1st power of 
x.  Because the original constant term (i.e. term associated with 
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x0) is now associated with x1, the constant term in the modified 
generating function is zero. 

 2 3 x0,1,1,1, x x x
1 x

↔ + + + =
−

   (37) 

One may readily right shift the original generating function, 
through the introduction of any number of leading zeroes, 
simply by multiplying the original generating function by x 
raised to a power equal to the number of leading zeroes that one 
wishes to introduce.  For the subject case, the sequence will 
always be known due to the fact that the calculation of λ is 
requisite for its use.  Let A(x) denote the series consisting of the 
sequence of positive integers, each repeated λ times, starting 
with one and subtract from it the series x⋅A(x), the resultant 
sequence will be of the form <1, 0 repeated λ – 1 times, 1, 0 
repeated λ – 1 times, …>.  The generating function for such a 
sequence is (1-xλ)-1.  This results in the following: 

 
( ) ( )

( )
( )( )

1A x x A x
1 x

1A x
1 x 1 x

λ

λ

− ⋅ = →
−

=
− −

 (38) 

Equation (38) can be rewritten by means of a partial fraction 
expansion, a common technique employed with continuous 
time integral transforms such as the Laplace transform, or its 
discrete analog, the Z-transform. The resultant is the sum of 
ratios of polynomials in x divided by x minus the appropriate 
root in the expansion.  When the form of the partial fraction 
expansion, on a termwise basis, takes the form shown by 
equation (39), where {γ1, γ2: γ2 > γ1 ≥ 0, γ1, γ2 ∈ ℕ}, then for any 
n ≥ γ1, the coefficient of xn in equation (39) is given by equation 
(40). 

 
( )

1

2

3

4

x
1 x

γ

γ

γ

− γ
 (39) 

 
( )

( ) ( )
1n

3 1 2 4

1 2

n 1 !
n ! 1 !

−γγ − γ + γ − γ
− γ γ −

 (40) 

Once carried out, the resultant solution for A(x) is in the form 
of a recursive relationship. Finally, one may replace the variable 
n by n2q – (σ1 – 1) to account for the initial zeroes that are 
generated by the turns prior to the first turn at which turn meter 
is contested.  

B. The case of more than two combatants 
The fact that the critical turn meter serves as a driving 

predicate for the ticks on which turns are won should be readily 
apparent from the previous section that details the solution for 
two combatants.This becomes even more apparent when the 
number of combatants is increased. When the number of 
combatants is greater than one, one combatant will have 
precedence at all ticks at which winning turn meter is in conflict 
with respect to all other combatants. This combatant can be 
viewed as the combatant that is the anchor for the entire combat 
scenario.  When all combatants have differing speeds, the 

combatant that serves as the anchor is the one with the highest 
critical turn meter value. It should be noted that this is not 
synonymous with the combatant with the highest speed.  In the 
case where a combatant with the highest speed is the anchor, 
this occurs not because of having the highest speed but rather 
because of having the greatest value of critical turn meter. 

For this section, for N ≥ 3 combatants, albeit also applicable 
to N ≥ 2 combatants, we order the combatants in order of critical 
turn meter value. Thusly TMc1 > TMc2, …, > TMc(N-1) > TMcN. 
This ordering is not predicated upon any particular ordering of 
the speeds or speed divisions for the combatants.  Three 
conditions ensured that for the case of N = 2 that each 
numerical, integer, value of k either mapped to no combatant 
winning turn meter or only one combatant winning turn meter 
(and in a manner consistent with the rules). These are the 
nominal relationship for the anchor (turn n1j at k = σ1n1j ∀n1j), 
the nominal relationship for the second combatant prior to the 
first tick at which turn meter is contested and the appropriate 
relationship for the second combatant for turns after the turn 
associated with the fist tick at which turn meter is contested.       

When a third combatant is introduced, these three constraint 
equations take precedence to the nominal relationship between 
the ticks at which turns would be won and the turn number for 
the third combatant.  It is again important to remember that the 
tick number, k, is the independent parameter. If σ3 is equal to 
either of the two extant speed divisions, or both, the first case 
described in the previous section, applies. If σ3 does not match 
the extant speed divisions then the first constraint encountered 
will be that which is presented by min{σ1, σ2} and at a value of 
k being equal to that minimum multiplied by σ3. The 
relationship between the tick at which the appropriate turn is 
won and the turn number for the third combatant is then 
modified as per the rules noted in the previous section.  This 
modified relationship, rather than the nominal has to then be 
checked against the constraint imposed by other speed division 
as well against the form of the constraint associated with 
min{σ1, σ2}.  These checks have to be made at each point where 
the form of the equations change. Thusly, the constraints 
operate in a sequential manner rather than a simultaneous 
manner. This renders approaches such as applying the Chinese 
Remainder Theorem, for simultaneously solving congruence 
relationships, inappropriate. 

As the number of combatants is increased, the corresponding 
number of extant constraint conditions is increased.  The same 
approach as detailed in the previous paragraph still applies but 
the number of checks increases with each additional combatant 
added.   

3. Examples 
For this section, we consider, first, some numerical examples 

that exemplify certain aspects that were developed in the 
previous section.   This is followed by two examples, both 
derived from specific in-game content and both involving PVE 
content in which winning against the game controlled 
opponent(s) requires dealing a certain amount of damage such 
as to cross the threshold for the top tier reward. 
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A. Examples from theory 
For the first example we consider the paired speed divisions 

{σi, σj} = {2, 4}, {3, 6}, {3, 9} and {6, 8}. For each pair, the 
combatant operating at σi is referred to as the first combatant 
while the combatant operating at σj is referred to as the second 
combatant. 

The results for each pairwise comparison are shown in Table 
2. For each case, the tick value at which the first contestation 
occurs is the least common multiple.  For each case, the 
corresponding turns for each combatant is equal to the tick 
value divided by the speed division of the opposing partner.  For 
the first case, the modified relationship for the second 
combatant switches from even to odd. For the third case, the 
modified relationship for the second combatant switches from 
odd to even. For these two cases, the relationship for the first 
combatant remains even and odd respectively.  Thusly there are 
no contested ticks beyond the first.  For the second case, when 
the first combatant wins, the tick turn relationship alternates 
from odd to even while the relationship for the second 
combatant switches to odd. For each closest turn pair following 
the turn pair at the first contested tick, the difference for the 
second combatant is always +1. For the opposing case (i.e. for 
the second combatant winning at the first contested tick), the 
closest turn pair becomes +1 for the first combatant. This same 
turn differential also occurs for the fourth case. In none of these 
cases, as expected, is there a contested tick after the first 
contested tick. 

 
Table 2 

Results of the pairwise comparisons between {σ1, σ2} showing the greatest 
common divisor (gcd), least common multiple (lcm), the combatant number 

with the highest critical turn meter (TMc), the value of k at which the first turn 
meter contestation occurs, the associated turn for the second combatant, and 

the resultant tick-turn modification for the same 
{si, sj} gcd lcm TMc k1 𝐧𝐧𝟐𝟐𝐤𝐤𝟏𝟏 n2j ≥ 𝐧𝐧𝟐𝟐𝐤𝐤𝟏𝟏 

{2, 4} 2 4 1 4 1 4n2j + 1 
2 2 2n2j + 1 

{3, 6} 3 6 1 6 1 6n2j + 1 
2 2 3n2j + 1 

{3, 9} 3 9 1 9 1 9n2j + 1 
2 3 3n2j + 1 

{6, 8} 2 24 1 24 3 8n2j + 1 
2 4 6n2j + 1 

 
For the second example, we consider, arbitrarily chosen, a 

speed division of five and evaluate it as a number when 
compared to the integers zero through 15 (the contextual 
applicability of speed divisions starts with two) in regards to the 
linear relationship given by equation (22) along with the 
determination of λ.  These results are shown in Table 3. 

In looking at Table 3, it can readily be seen that the first 
instantiation of a new integer value for α12, with respect to the 
numerically increasing value of σ2, occurs when σ2 is that 
integer multiple of σ1.  That value then hold apt for the next four 
speed divisions (for a total of five speed divisions).  At the first 
instantiation of each integer value, as expected, β12 is zero 
valued. This value increases by one for each speed division, 
from the instantiating speed division, reaching the expected 
value of σ1 -1 = 4 at the speed division immediately prior to the 

one for each α12 first undergoes incrementing by unity.  This 
cyclical pattern is readily apparent.  

 
Table 3 

Values for the linear relationship coefficients α12 and β12 as well as l, where σ1 
= 5 and σ2 (as a numerical value) as listed 

s2 a12 b12 l 
0 0 0 NA 
1 0 1 4 
2 0 2 2 
3 0 3 3 
4 0 4 1 
5 1 0 NA 
6 1 1 4 
7 1 2 2 
8 1 3 3 
9 1 4 1 
10 2 0 NA 
11 2 1 4 
12 2 2 2 
13 2 3 3 
14 2 4 1 
15 3 0 NA 

 
The value of λ at integer multiples of σ1 is not utilized due to 

the fact that the theoretical development that used λ was 
predicated upon coprime speed divisions. The value of λ for 
each speed division following the one for which σ2 is an integer 
multiple of σ1 has the expected value of λ = σ1 – 1.  The values 
of σ2 of {1, 6, 11}, multiplied by four, followed by the addition 
of unity results in {5, 25, 45}.  Each value is the first value that 
is divisible by both σ1 = 5 and the corresponding value of σ2.  
For the last speed division prior to an increment by unity of α12, 
the value of λ is the expected value of λ = 1. The values of σ2 
of {4, 9, 14}, multiplied by one, followed by the addition of 
unity results in {5, 10, 15}.  Each value is again the first value 
that is divisible by both σ1 = 5 and the corresponding value of 
σ2.  The value of λ = 2 or λ = 3 was based upon knowing that 
they were the only two remaining values in the integer set from 
one to σ1 – 1 and by simple inspection. For the values of σ2 of 
{2, 7, 12}, multiplication by λ = 2, plus unity leads to the result 
of {5, 15, 25}.  For the values of σ2 = {3, 8, 13}, multiplication 
by λ = 3, plus unity leads to the result of {10, 25, 40}.  These 
values, for both cases, again represent the first values that are 
divisible by both σ1 and the corresponding value of σ2. 

If we take σ1 = 5 and σ2 = 7, equation (29) leads to the 
following: 

 { }2q
2q 2q 2q

n 4
k 7n n : 5 n

2
− 

= + ≤ 
 

 (41) 

This leads to the obvious question of whether or not the 
equation is correct.  We already know that k = 7n2q {n2q: 1 ≤ n2q 
≤ 4}.  For these two speed divisions, writing out the ticks for 
turns 5 ≤ n2q ≤ 13 (the upper limit is arbitrary) shows that the 
turn meter is won on k = {36, 42, 51, 58, 66, 73, 81, 88, 96}.  
Every two turns requires an additional increment by unity.  Use 
of equation (41) readily reproduces the tick values for both the 
contested and uncontested terms and without requiring 
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calculating the preceding sequence. Using equation (33), for 
this case, leads to the following result: 

 
( ) { }2q

2q 2q 2q
2q

n 31k 7n n : 5 n
2 n 3 mod 2

− − 
 = + ≤
 − 

 (42) 

As expected, this equation also correctly replicates the values 
for k. Finally, for these two values, we can consider the system 
response based upon the use of a generating function and 
recursion.  For σ1 = 5 and σ2 = 7, resulting in λ = 2, the 
difference between the tick values for the modified relationship 
when compared to the nominal relationship, starting at n2j = 5, 
is the sequence {1, 1, 2, 2, 3, 3, …}.  Setting these coefficients 
to be equal to those of A(x), we calculate x ⋅ A(x) as {0, 1, 1, 2, 
2, 3, 3, …}.  The difference A(x) - x ⋅ A(x) is thusly {1, 0, 1, 0, 
1, 0, …}.  The generating function for this sequence is (1-x2)-1.  
This leads to the following solution for A(x). 

 ( )
( )( )2

1A x
1 x 1 x

=
− −

 (43) 

The partial fraction expansion of this equation is: 

 ( )
( ) ( )2

1 1 1 1 1 1A x
2 4 1 x 4 1 1 x1 x

= + +
− − −−

 (44) 

Using the definitions from equations (39) and (40): 

 ( ) ( )( )n1A n 2n 3 1
4

= + + −  (45) 

This equation gives the original sequence of {1, 1, 2, 2, 3, 3, 
…}.  We can replace n with n2j – 4 if we wish to explicitly 
include n2j in the formulation.   

The final case shown for this section is that of σ1 = 5 and σ2 
= 9.  Here, 2 ⋅ σ1 = σ2 + 1. If we manually compute the values 
for k for n2j ≥ 5, we find that the result requires a +1 iteration 
for every turn.  Thusly, for n2j = five to ten, k = {96, 106, 116, 
126, 136, 146}.  Using equation (34) leads to the following 
solution: 

 { }2q 2q 2qk 10n 4 n : 5 n= − ≤  (46) 

Substitution of the turn numbers n2j = five to ten produces the 
same result for the tick values. 

B. Clan Boss 
The game offers two differing opponents, currently, under 

the classification of Clan Boss, however, the Demon Lord Clan 
Boss is typically the one that is referenced when the term is 
used.  The particular opponent in this encounter is a singular 
opponent and comes in six discrete tiers of difficulty that are 
labeled from easy to ultra nightmare (UNM). The combat 
statistics assigned to the opponent at each tier are known and 
increase with increasing difficulty.  For each tier, the Clan Boss 
starts at neutral affinity and then changes to a non-neutral 
affinity once the collective damage has exceeded half of the 
effective health points assigned to the opponent. Once the 
affinity changes to one that is non-neutral, the opponent gains 

additional skills over the case of neutral affinity.  The other 
salient point, here, is that at turn number 50, for the opponent, 
certain player combatant skills no longer work against the 
opponent.  Other aspects of this encounter such as increased 
damage and immunities (outside of immunities to speed 
modification and direct turn meter manipulation) are not 
germane to this discussion.  What is of relevance is that the 
opponent follows a fixed sequence of three different attacks 
with the first two consisting of area of effect (AOE) attacks and 
the third consisting of a single target attack. 

For this example, we consider the neutral affinity case for the 
UNM difficulty tier encounter.  The known speed of the 
singular opponent is 190. For each encounter, a player can 
utilize up to five champions. The goal, here, is not to provide a 
fully optimized team given that the ultimate metric is the 
damage generated, which in turn requires a much broader 
elucidation of the various skill mechanics that are available.  
Instead, we first consider the case of one champion with a 
specific skill that we seek to place in relationship to the skills 
used by the singular opponent.  This skill is the block damage 
skill. When used, a block damage buff is placed on all 
combatants that are on a player’s team. For this case, we 
consider the skill as being active, for two turns (until the end of 
the second turn), for each champion on a player’s team.  The 
two turns are predicated upon each individual champion’s turns.  
For the champion that that possesses the ability to use the skill, 
the turn upon which it is used does not count as a turn for 
consideration in the aforementioned two turns.  Thusly, if the 
skill is used on the champion’s first turn, it remains active until 
the end of the champion’s third turn.  Two other foundational 
points are relevant prior to evaluation.  The first is that the 
cooldown for the skill is four turns.  Cooldowns are 
incremented at the start of each turn. Thusly, if the skill is used 
on the champion’s first turn, it first becomes available, again, 
on the champions fifth turn. The second point is that the 
champion has two other skills (one with a cooldown and one 
without a cooldown). 

For the singular opponent’s speed of 190, the use of equation 
(2) results in the determination that the tick rate is 0.133 decimal 
percentage TM per tick and the use of equation (3) results in the 
determination that the speed division is eight.  The critical turn 
meter value for this combatant, determinable by equation (4), is 
1.064. Under nominal conditions, turn meter is won for the first 
AOE attack at tick k = 8, for the second AOE attack at tick k = 
16 and for the single target attack at tick k = 24.  This is 
followed by repeating the sequence at ticks 32, 40 and 48 (and 
so on). This sequence can be viewed as an initial transient 
sequence of 8-8 followed by a steady state sequence of 16-8. 
The three types of attacks can be encoded as 1 + 3 ⋅ b10, 2 + 3 ⋅ 
b10 and 3 + 3 ⋅ b10, for the first AOE, second AOE and single 
target attacks, respectively, and with {b10: b10 ∈ ℤ0}.  
Furthermore, for a give turn n1i, the type of attack can readily 
be determined by equating each encoding to the turn number 
and determining which of the three cases produces an integer 
value for b10. This encoding is not subject to modification by 
the relationship between tick and turns due to the fact that it is 
simply an encoding for attack type as a function of turn number.  
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The nominal relationship for the tick number on which turn 
meter is won, for each type of attack, is simply k = 8 ⋅ (1 + 3 ⋅ 
b10), k = 8 ⋅ (2 + 3 ⋅ b10) and k = 8 ⋅ (3 + 3 ⋅ b10), for each type 
of attack, respectively.  This relationship is subject to 
modification as a function of the critical turn meter value 
relative to other combatants. 

For each value of b10, it can be seen that the turn structure is 
symmetric about b10 + 3, which is the single target attack, with 
two antecedent AOE attacks and two subsequent AOE attacks.  
Thusly, each symmetric segment consists of a total of five turns 
with four segments. For each unit increase in b10, the two 
subsequent AOE attacks from the previous value of b10 become 
the two antecedent AOE attacks for the incremented value of 
b10. For the champion in question, a similar symmetric structure 
can be developed by using an integer encoding, b11 {b11: b11 ∈
ℤ0}.  Here, the turns spanned are from b11 + 1 to b11 + 7 and 
with the centerpoint being at b11 + 4.  This holds because the 
effect is used at b11 + 1, expires at b11 + 3 and becomes available 
again at b11 + 5.  The two symmetric structures can be 
visualized, as boxcar functions, as shown in Figure 1. 

      

 
Fig. 1.  Symmetric nominal turn structure as a function of tick value for the 

three turn sequence (red) and for the sequence consisting of a two turn effect 
duration with a four turn cooldown (blue) 

 
In examining Figure 1, it can be seen that if the tick number 

at turn b11 + 1 is less than the tick at turn b10 + 1 and if the tick 
number at turn b11 + 3 is greater than the tick at turn b10 + 2, 
then the overlap between the symmetric sequences is 
maximized, for the range of values of b10 and b11, when the 
difference in ticks is minimized between the points of 
symmetry.  It is clear that the tick values for turns b10 +3 and 
b11 + 4 cannot be the same as such would indicate both 
combatants taking a turn on the same tick value. Furthermore, 
one has to consider the changes that occur to the nominal 
relationships for the combatants as a function of relative critical 
turn meter.  It should be noted that this approach is only one of 
many approaches that could be taken and is used, herein, for the 
purposes of this example.   

For the case in which the Clan Boss was given preference at 
contested ticks and for no turn offsets (i.e. not using the 
specified skill on the first turn) for the opposing combatant, a 
speed division of six for the opposing combatant met the 
desired parameters.  For each sequence, as shown in Figure 1, 
the difference in ticks, (b11 + 4) – (b10 + 3), was unity. The 
difference in ticks for (b11 + 1) – (b10 + 1) was negative two for 

the first sequence and then negative one for all subsequent 
sequences. The difference in ticks for (b11 + 3) – (b10 + 2) was 
positive two for the first sequence followed by positive three 
for the remaining sequences. The difference in ticks for (b11 + 
5) – (b10 + 4) was negative one all sequences. The difference in 
ticks for (b11 + 7) – (b10 + 2) was positive three for all sequences. 

C. Hydra 
The Hydra is the second opponent that falls under the 

heading of Clan Boss. This particular opponent consists of six 
heads, but with a constraint of only four, maximally, being 
present at any one time. Thusly, the encounter can be viewed as 
consisting of four separate opponents. This encounter is divided 
into six rotations.  Each rotation is defined by a given set of four 
starting heads, each with a prescribed affinity, and with the 
remaining two heads, also with prescribed affinities, that are 
placed in a pool. Each head has prescribed skills and a 
prescribed set of combat statistics. The latter are known and 
increase with increasing difficulty (for a total of four difficulty 
settings). During combat, once a head is defeated (i.e. 
decapitated), it returns to the pool; the head that respawns is 
drawn from the pool.  Thusly, with a total of six heads, from 
which four are drawn, there exist a total of 15 combinations (six 
choose four, which is equal to 6! divided by the multiplication 
of 4! times 2!). Winning an encounter for this case is defined as 
it was for the prior example.   

For this example, we consider the starting heads for the sixth 
rotation and at the normal level of difficulty.  In this example, 
the heads are referred to by name. The names, speeds [20], tick 
rates, speed divisions and critical turn meter values are shown 
in Table 4. 
 

Table 4 
Starting hydra clan boss head parameters for rotation six at normal difficulty 

Head s t s TMc 
Decay 190 0.133 8 1.064 
Torment 160 0.112 9 1.008 
Mischief 210 0.147 7 1,029 
Wrath 140 0.098 11 1.078 

 
From Table 4, it is abundantly clear that the preference at 

contested ticks is in the order of Wrath, Decay, Mischief and 
Torment.  For these four heads, Wrath represents the anchor and 
the relationship between which the ticks on which turns n1j are 
won and the turn number is: 

 1j 1jk 11n n= ∀  (47) 

For Decay, since the speed divisions are not equal and with 
gcd(11, 8) = 1, we may readily define the relationship between 
the ticks on which turns n2j are won and the turn number for the 
first ten turns. 

 { }2 j 2 j 2 jk 8n n :1 n 10= ≤ ≤  (48) 

The upper limit in the previous equation derives from the fact 
that nominally, k = 88 for n1j = 8 and also for n2j = 11.  With 
Wrath having precedence, the relationship is altered for Decay 
starting at n2j = 11.  From inspection, the equation 11n1j – 8n2j 
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= 1, has a first solution at n1j = 3 and n2j = 4.  Substitution of 
this result into equation (29) results in the following: 

 { }2 j
2 j 2 2 j

n 10
k 8n n : n 11

4
− 

= + ≥ 
 

 (49) 

An equivalent form of equation (49), based upon equation 
(32),  is the following: 

 
( )( )

{ }
2 j 2 j 2 j

2 j 2 j

1k 8n n 7 n 7 mod 4
4

n : n 11

= + − − −

≥
 (50) 

While either equation (49) or (50) are directly usable, it is 
more instructive, for this example, to note that the relationship 
is one in which the number of ticks above the nominal value 
increases by one for every four turns inclusive of and following 
turn n2j = 11. This relationship can thusly be rewritten using an 
integer, b12 {b12: b12 ∈ ℤ+}, whose value increases by one for 
every turns, starting with turn 11.  Thusly, the turn n2j = 50 
occurs when k = 8n2j + 10 and at the upper limit of the domain 
of 47 ≤ n2j ≤ 50. 

 { }
2 j 12

12 2 j 12

k 8n b

4b 7 n 4b 10

= +

+ ≤ ≤ +
 (51) 

Equations (47), (48) and (51) are the patent constraint 
equations that are present when considering the introduction of 
the third head, Mischief. The speed assigned to this head places 
the head into speed division seven. The first constraint that 
would be encountered would be equation (48) secondary to the 
fact that k = 56 occurs when n2j = 7 and when n3j = 8.  We may 
thus readily write the following: 

 { }3 j 3 jk 7n 1 n 7= ≤ ≤  (52) 

For speed divisions 7 and 8, the third case presented in theory 
section regarding two combatants applies.We may readily 
define the lower limit of the inclusive domain, based upon not 
violating the constraint due to equation (48). 

 { }3 j 3 jk 8n 7 8 n __= − ≤ ≤  (53) 

In equation (53), the upper limit has been left open due to the 
fact that it requires further consideration.  In the first, we note 
that the constraint that arise from equation (47), at k = 77, 
specifically, is no longer valid due to the fact that the domain of 
the nominal form of equation (52) results in a maximum value 
for k of 49. This does not, by any means, however, preclude the 
necessity for comparing equations (47) and (53) against each 
other.  Furthermore, the latter has to be compared with the 
appropriate form of equation (51).  Because of the form used 
for equation (53), it is known that the values of k associated 
with the domain will not match the tick values associated with 
the domain of equation (51) for as long as that equation remains 
unchanged. The equation does change, however, from k = 8n2j 
to k = 8n2j + 1 at turn n2j = 11 and with b12 = 1. We may also 
readily see that one value for consideration as the upper limit in 

equation (53) is this numerical value of 11. This holds because 
at n3j = 12 = 11 + 1, equation (53) gives a tick value of 8(11 + 
1) – 7 = 8(11) + 1 = 89.  This is the same tick value when n2j = 
11 and thus is not correct.   

Formally, for this first upper limit, we set equation (47) equal 
to equation (53) and set equation (51) equal to equation (53).  
The first equality is solved for the first value of n1j that results 
in a tick number that is greater than that given by the lower limit 
of equation (53), which is 57. The second equality is solved for 
the first value of n2j that results in a tick number that is greater 
than the given lower limit of equation (53).  The solution that 
results in the lowest tick number above this lower limit is the 
correct solution in regards to being the next operative 
constraint. For both cases, the corresponding calculated value 
of n3j must have one subtracted from it to give the correct 
solution for the upper boundary. This is because the calculated 
value of n3j results in the tick numbers being equal.  Starting 
with the second comparison, with b12 = 1, the equality is the 
following: 

 
2 j 3 j

2 j 3 j

2 j 3 j

8n 1 8n 7
8n 8n 8

n n 1

+ = − →

= − →

= −

 (54) 

With n2j =11, k = 88 and the calculated value of n3j is 12.  
Subtracting one from this result gives the expected upper limit 
value for this calculation of n3j = 11. For the first case: 

 1j 3 j11n 8n 7= −  (55) 

Rewriting this equation as a congruence relationship leads to 
the following: 

 ( )1j11n 7 mod8≡ −  (56) 

This equation is solved by first noting that 8∙5 = 40 followed 
by using equation (21) and then dividing by 11 (with the 
notation that gcd(11, 8) = 1). 

 

( )
( )

( )
( )

1j

1j

1j

1j

11n 7 mod8

11n 7 40 mod8

11n 33 mod8

n 3 mod8

≡ − ⇒

≡ − + ⇒

≡ ⇒

≡

 (57) 

The final congruence shown in equation (57) translates into 
the following equality: 

 1jn 8q 3= +  (58) 

In equation (58), {q: q ∈ ℤ, q ≥ 0}.  At q = 1, n1j = 11, which 
results in a value of k = 121 and a value of n3j = 16.  Clearly, 
here, the constraint generated by equation (51) is encountered 
first.  Equation (53), with the proper upper limit, is the 
following: 

 { }3 j 3 jk 8n 7 8 n 11= − ≤ ≤  (59) 

The form of this relationship, with a lower limit of n3j = 12, 
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then becomes the following: 

 { }3 j 3 jk 8n 6 12 n __= − ≤ ≤  (60) 

For the general case, the process for determining the upper 
limit from equation (53) would have to be repeated, not just for 
determining the proper upper limit in equation (60) but for 
every subsequent set of limits.  For this case, however, we may 
first determine the set of solutions that would be apt if the 
constraint defined by equation (51) was the first operative 
constraint.  We may then derive the set of solutions that would 
be apt if the constraint defined by equation (47) was operative, 
starting with the upper limit for equation (60).  If the ticks 
predicted by each step for the latter exceed those for each step 
of the former, then the former is operative over all turns of 
interest.  In examining the form of equation (59)  and noting 
that for each step in which the constant term on the right of the 
equality changes that such change is by adding one, we may 
rewrite equation (59) in the following manner: 

 { }3 j 12 12 3 j 12k 8n 8 b 4 4b n 7 4b= − + + ≤ ≤ +  (61) 

It can readily be seen that the upper limit for equation (61) is 
equal to the lower limit for equation (51). Furthermore, for each 
value of p, setting the two equations equal to each other always 
results in the equality of n2j = n3j – 1. The values of n2j are known 
since b12 is known and the lower limit of equation (51) is known 
in terms of b12.  This means that the upper limit, for each b12, in 
equation (61) is also known. For the integer values of b12 from 
one to ten, the lower limits of equation (51) become {11, 15, 
19, 23, 27, 31, 35, 39, 43, 47}. The corresponding lower limits 
of the same equation become {14, 18, 22, 26, 30, 34, 38, 42, 46, 
50}. The lower limits of equation (61) become {8, 12, 16, 20, 
24, 28, 32, 36, 40, 44}.  The upper limits of the same equation 
become the lower limits of equation (51).  The ticks for these 
upper limits are {81, 114, 147, 180, 213, 246, 279, 312, 345, 
378}. We have already shown that the upper limit for b12 = 1 is 
at n3j = 11 for the case of b12 = 1.  For each successive case 
regarding the comparison with equation (47), we first consider 
the following problem: 

 ( ) ( )a11n 1 mod8 33 mod8≡ ≡  (62) 

This results in a solution of na
-1 mod 8 = 3 mod 8 = 3.  This 

solution, while not the only solution, for the multiplicative 
modular inverse can then be used to solve for the remainder 
term, which becomes additive under equality, for each case of 
b12.  As an example, for the case of b12 = 2, the resulting 
congruence equation becomes the following: 

 ( ) ( )a a11n 6 mod8 11 3n 6 3 mod8≡ − ⇒ ⋅ ≡ − ⋅  (63) 

The first negative solution to -18 mod 8 is -2, which is 
congruent with 6 for this modulus. This is the same answer that 
can be obtained from 11na ≡ -6(mod 8) ≡ -6 + 72(mod 8) ≡ 66 
(mod 8). This leads to na ≡ 6 (mod 8). The first appropriate 
solution for na = 8q + 6 occurs at q = 1, which provides an 
answer of n1j = 14, k = 154 and a solution of n3j = 20 (which 
would mean an actual solution of n1j = 19). This value of k 

exceeds the value, calculated from the other constraint, of 114, 
and thusly the constraint noted above is active at b12 = 2.  Over 
the domain of b12, performing this comparative evaluation for 
each value leads to tick values of {121, 154, 187, 220, 253, 286, 
319, 352, 384 and 416}.  Thusly, over the domain of b12 (i.e. 
from one to ten), the constraint active upon Mischief is 
predicated by Decay, directly, and not directly by Wrath. This 
leaves the fourth, and final, head, Torment, for consideration.  
Before including this head, note the fact that once n2j = 6 and 
n3j = 7, the ticks for the latter are equal to the ticks for the former 
plus one.  This is inclusive for this turn and for all subsequent 
turns for n2j and n3j. 

For Torment, the first constraint that impacts upon the 
relationship between the ticks at which turns are won is 
equation (48). While one might have expected it to be equation 
(52), such is not the case due to the fact that the speed division 
for Torment lies outside of the domain of the equation.  Thusly, 

 { }4 j 4 jk 9n 1 n 7= ≤ ≤  (64) 

As a result of the constraint, the following holds for n4j = 8 
and up to an as of yet unspecified number of turns. 

 { }4 j 4 j 4 jk 9n 2 n : 8 n __= + ≤ ≤  (65) 

Here, the increment over the nominal value is two due to the 
fact that the constraint equation arises from the second head, for 
which, within the range of ticks, the tick number immediately 
subsequent to the contested tick is also contested (due to the 
third head).  An equivalent form for equation (65) is k = 10n4j – 
6 and with the domain being unchanged.  For the upper limit of 
the domain for equation (65), we must consider equation (47), 
equation (51) at b12 = 1 and equation (61) at b12 = 2.  This 
consideration leads to the first constraint as being applicable 
and the upper limit in equation (65) is n4j = 11.  Starting with 
the domain of equation (65), the limits for the resultant solution 
are over the inclusive turns of {8, 11}, {12, 14}, {15, 18}, {19, 
21}, {22, 25}, {26, 28}, {29, 32}, {33, 35}, {36, 39} and {40, 
42} for the additive terms of +2, +3, +5, +6, +8, +9, +11, +12, 
+14 and +15, with respect to the nominal, respectively (up 
through k = 393).  What this shows is an alternating application 
of the constraint due to the second head followed by the 
constraint due to the first head.   

The solutions developed for this example were verified using 
the standard approach of iterating ticks, calculating the turn 
meter for each combatant for each tick using the known tick 
rates and determining the ticks on which turns are won based 
upon the rules noted previously.  The solution, for each head, 
based on this approach, matched the solutions determined 
previously.  

4. Discussion 
In the subject work, the game RSL has served the function of 

providing a mechanism for concretizing the theory that was 
presented.  In this regard, it is important to note that the 
relationship between RSL and the theory is based, to a small 
extent, on information provided by the developer [16], and to a 
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larger extent upon empirical observation and testing.  No 
segment of the actual source code was evaluated in the 
preparation of this work nor was any input requested or 
provided by the developer.  Thusly, it may be more apt to state 
that the game specific examples implement the underlying, 
presented, theory in a manner that is consistent with empirical 
observations and testing in regards to the game.   

For the purpose of discussion, RSL may be characterized in 
a slightly different manner.  That being one consisting of a 
multi-layered random number generator (RNG) coupled with a 
small subset of deterministic elements.  If the random number 
generation is properly programmed to avoid any inherent bias 
and if there are no mechanisms present for bypassing or slanting 
the RNG, then the RNG component, in regards to obtaining a 
desired outcome for any game process, is out of the control of 
the player (outside of repeating the process a sufficient number 
of times in order to obtain the desired outcome).  The 
consistency of the random number generation, used within the 
game, when compared to any ideal standard, is outside of the 
scope of the subject work.   

Setting aside the RNG issue, it is the deterministic aspects of 
the game that serve as the mechanism, collectively, by which 
any player may impact the outcome of applicable in-game 
content, in a manner that is both desired and repeatable. 
Because all aspects of the game either directly or indirectly 
involve combat, and because the combat timing mechanics are 
predominantly deterministic, the importance of understanding 
the combat timing mechanics cannot be overstated. In this 
regard, posited in equation (2) is a simple linear relationship 
between two continuous variables, speed and tick rate.  Within 
the context of abstract algebra, this relationship can be viewed 
as a function, which in this case is a constant, that maps 
elements from a domain (speed) into a codomain (tick rate).  
The mapping function is bijective due to the fact that each 
element of the codomain is mapped to be at most a single 
element in the domain (injective) and because each element of 
the codomain is mapped to by at least a single element of the 
domain (surjective).  From the general perspective, one can 
trivially define any form of mapping that one wishes (e.g., split 
domain, non-linear, etc.).   

The concept of speed divisions arises from the tick based 
combat timing system, the tick rate and a minimum value of 
turn meter at which a combatant is given consideration for 
winning turn meter. The speed division is simply the number of 
integer multiples of the tick rate required to be at or first exceed 
the minimum value needed for being given consideration for 
winning turn meter. The set of finite speed divisions, in 
conjunction with the tick based timing system, also generates a 
situation in which there will always be at least one tick value 
where turn meter is contested for any pair of combatants. 

The speed division concept gives rise to a second mapping.  
The second mapping, is from tick rate to speed division. This is 
a mapping from a continuous domain to a discrete domain. 
When coupled with the rules for winning turn meter, this 
mapping serves to increase the complexity of the combat timing 
mechanics.  If the set of speed divisions is chosen appropriately 
then each speed division is mapped to be at least one element 

from the set of potential tick rates.  This mapping, however, is 
not one-to-one, due to the fact that any number of tick rate 
values, to the extent of the digits of precision used, map to any 
single speed division.  The inverse mapping, that being from 
speed division, to tick rate, without additional constraint 
information, can only provide a range of values. 

The concept of a critical turn meter value is one that arises 
from the tick based combat system, the tick rate and having a 
minimum value of turn meter for being consideration for 
winning turn meter.  Equation (4) provides the relationship 
between speed division, tick rate and the resultant critical turn 
meter value.  All speed divisions had an associated, inclusive, 
lower critical turn meter boundary value of unity. The 
exclusive, upper critical turn meter boundary was greater than 
in unity, in all cases, and with a decreasing value with 
increasing speed division. The resultant of a common, inclusive 
lower boundary, and the range of exclusive, upper boundaries, 
all greater than unity, is that there exist overlapping ranges of 
critical turn meter values, across all speed divisions.  The 
concept of the critical turn meter value clearly shows why the 
approach of simply having the highest speeds is not always an 
appropriate approach. 

The rules for winning turn meter further enhance the 
complexity of the mechanics. External to the factors already 
noted, this arises from the combination of the following: (a) 
allowing only one combatant to win turn meter at a given tick 
value and (b) allowing the turn meter of a combatant, that is 
above the minimum value, but not the highest value amongst all 
combatants, to increase further. A system with the inclusion for 
contemporaneous turns would actually simplify the combat 
mechanics. 

The heavy focus on the case of two combatants, in the 
theoretical development presented in the subject work, was due, 
primarily, to the fact, that winning turn meter, for any number 
of combatants, involves sequential pairwise comparisons rather 
than simultaneous comparisons. The number of sequential 
comparisons required is unity for two combatants and increases 
by the number of extant combatants present for each additional 
combatant considered. These comparisons, specifically, focus 
on the alteration in the tick-turn relationship, from the nominal 
relationship, at contested tick values, for the combatant with the 
lower valued turn meter.  In this regard, all cases in which the 
speeds of two combatants are not exactly equal, reduce to one 
of three solutions. It is only in the case where the speed 
divisions for the two combatants are the same must one 
consider the actual speeds. The solutions for the other two cases 
can be and were developed on the speed division level without 
any necessity for referencing the underlying speeds. The 
solution for the case of speed divisions sharing a gcd of greater 
than unity are given by equation (15).   

The more interesting and mathematically complex case was 
raised by the situation in which the speed divisions are coprime. 
The presentation of this case in terms of the treatment of σ1 
fixed or σ2 fixed was an artifice of presentation to the extent 
that each case involved varying the opposing speed division.  In 
practice, the approach in both cases is the same, and was 
approached using modular arithmetic. The theory presented in 
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this work, in regards to modular arithmetic, is not unique to 
RSL or games. Instead, it is operative in a number of different 
applications, including but not limited to certain public key 
cryptography systems.  Returning to the context, the modular 
arithmetic approach involved first solving for λ, as per equation 
(25), and then using the value in equation (29).  The form based 
upon using the simple mod function, given by equation (33), 
was simply a rearrangement of equation (29) and was provided 
for the sake of completeness. The theory regarding the use of 
generating functions and sequences, in light of the example 
used, which merely recreated a known sequence, might seem 
extraneous.  The importance of the inclusion of this method is 
elucidated in the portion of this section that discusses future 
work. 

The first tranche of worked examples don’t invite any 
additional discussion. The two game related examples, on the 
contrary, do invite further discussion. Neither of these two 
examples was presented under the claim of an optimized 
approach. Instead, both were presented with the goal of 
crystallizing the underlying theory. The definition of an 
‘optimized’ approach is multiparous rather than singular and for 
both cases would involve the consideration of additional 
combatants.  For the Clan boss example, the method of using 
the points of symmetry for the Clan boss turn sequence and a 
single oppositional combatant, using a skill with a two turn 
duration, and a four turn cooldown, was a method only with the 
intent of showing the numerical relationships.  The issue of 
whether or not this approach should or should not be within an 
‘optimized’ approach is not addressed in the subject work.  The 
second example presented was presented with the intent of 
showing the process when considering more than two 
combatants. The exclusion of any oppositional combatants was 
a purposeful choice in order to simplify the presentation and to 
preclude any misunderstanding regarding optimization.  In 
regards to the first, the complexity of the tick-turn relationship 
should readily be appreciated by the presentation.   

In regards to the Hydra example, the anchor was distally 
removed from the other heads, in regards to the speed division, 
which was taken as being the highest speed division, which 
corresponded to the slowest speed. An interesting aspect of the 
example was the interplay between the Head of Decay and the 
Head of Mischief.  The former was at one speed division lower 
and with the higher critical turn meter value when compared to 
the latter. The numerical choices used closely couple the two 
heads (this makes sense in regards to the primary skills of both).  
The example, as a whole, while complex, only scratches the 
surface of the complexity of the particular encounter. 

A final point of discussion is requisite, prior to considering 
avenues for future work.  This point of discussion focuses upon 
one of the cited references, which is the most comprehensive 
written context-specific reference that was available [17]. There 
are a number of points that are worthy of note.  None of these 
points detract from the significant work expressed within the 
reference. The issue of the 2:1 ratio of turns based upon speeds 
of 200 to 100 was addressed within the reference.  However, 
the rounded value, for c, of 1430 produced an incorrect result. 
This rounded value was also used in the generation of a speed 

division table, which in turn contained boundary values that 
were rounded to the nearest integer value.  No mention was 
made that the upper boundary, for each speed division, is an 
exclusive boundary. 

The concept of a dragging effect, which was defined as ‘a 
tactic whereby a character’s speed division is dragged down by 
one or more,’ however, is incorrect, in regards to ubiquitous 
application.  This does hold for the special case where σ2 + 1 is 
equal to an integer multiple of σ1.  One, of course, may readily 
write σi ⋅ nip as (σi + 1) ⋅ nip – nip, but this is a simple rewriting 
rather than tactically altering the speed division.  The confusion 
may arise from equating the addition of unity to the tick value, 
for the losing combatant at a contested tick, to increasing the 
speed division by unity.  Using the standard form of a linear 
equation, the former is y = m ⋅ x + 1 while the latter is y = (m + 
1) ⋅ x.  The reference provided substantive details on full team 
compositions for Clan boss battles.  A discussion of the same, 
here, falls outside of the scope of the subject work. 

Finally, it can readily be stated that the subject work is 
foundational. The topics covered in the subject work elucidate 
the basic relationships between speed, tick rate, speed divisions 
and turn meter. At the risk of tautology, a thorough 
understanding of these relationships is requisite for the proper 
use of the same when it comes to the subsequent applications of 
the same. This includes, but is not limited, to evaluating the 
extant conceptualizations regarding turn ratios and 
comprehensive team building applications [17]. There are a 
number of sources currently available, in the public domain, 
that provide information on teams that are speed tuned [21] as 
well as calculators for the purpose of speed tuning various in-
game combat scenarios [22]-[24]. The information regarding 
extant, functional speed tuned teams and the calculators are 
invaluable resources for the player base. The calculators, 
however, require the entry of speed values, on the part of the 
user, for the combatants that they are considering for the content 
in question.  Unless one uses external information regarding 
speed divisions and critical turn meter values, the approach of 
using speeds can lead to long rounds of trial and error due to the 
fact that a single incorrect speed can readily change a functional 
speed tune into one that fails.   

One potential method for bypassing a trial and error speed 
based approach is to use the tick based timing system.  By this, 
one means using the specific tick values or range of tick values 
at or over which one would want to have a particular combatant 
win turn meter. It is within this context where the theory 
regarding sequences and generating functions may provide for 
the greatest utility. In the example that was used, the sequence 
represented the number of ticks that were offset from the 
nominal case, subsequent to the first contested tick.  Such an 
instantiation of a sequence is clearly not the only instantiation.  
One may readily generate a sequence consisting of tick offsets, 
for a given turn, with respect to an anchor or with respect to the 
ticks of any other combatant.    

Finally, the issue of optimization is addressed. As noted 
previously, and perhaps noted to a greater extent than 
necessary, optimization is multiparous. The in-game content 
was divided into two categories based upon the ultimate 
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objectives of each. These categories are not, however, mutually 
exclusive in regards to the ubiquitous contextual foundation of 
combat. This foundation inherently involves the generation of 
sufficient damage to the opposing combatants.  Developing an 
optimization algorithm based on the damage mechanics would 
clearly require the inclusion of all salient mechanics within the 
structure of the algorithm. One may, however, simplify the 
considerations by evaluating other game facets that are 
deterministically related to the damage mechanics but far 
simpler in regards to evaluation.  Given two equivalent teams 
of combatants, for any given in-game encounter, the team that 
is tuned to use the skills of the combatants in a desired and 
repeatable manner is far more likely to survive longer (if the 
skills impact on such) and deal a greater amount of damage (if 
the skills impact on such).  From the mathematical perspective, 
the development of an optimization algorithm will most likely 
require an alternative to using an approach for continuous time 
systems, such as the Karush-Kuhn-Tucker (KKT) optimality 
conditions, followed by discretization.     
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Glossary of Symbols and Variables 
ℕ The set of natural numbers. 
ℤ The set of all integers. 
ℤ0

+ The set of all positive integers and zero. 
∈  The elements on the left are a subset of the domain on the right. 
∀  The statement to the left holds for all values as defined to the right. 
≡  Denotes a congruence relationship. 
A(x) Series expansion of a variable in x. 
N Total number of combatants in any in-game scenario.  Integer valued. 
TM Turn meter and with the subscript referencing the combatant.  Continuous 

variable with a lower limit of zero. 
TMc Critical value of turn meter.  When a second subscript is used, it references 

the noted combatant.  Continuous variable.  
a() Integer valued term.  The single subscript references the combatant or the 

order of the polynomial coefficient term associated with a power series 
expansion. 

b Subscripted integer valued terms with the domains defined in the body of 
the paper. 

c A constant with the value given in the body of the paper. 
d Greatest common integer divisor of two integers. 
f(x) A function of the independent variable x. 
gcd Greatest common divisor.  Integer valued. 
k Tick count.  Integer, greater than or equal to zero.  When subscripted, the 

subscript indicates the numerical value of the instantiation of a contested 
turn meter (e.g. k1 refers to the first instantiation). 

lcm Largest common multiple.  Integer valued. 
n Turn number with dual subscripts.  The first subscript refers to a specific 

combatant.  When the first subscript is alphabetic, it refers to a combatant 
without consideration to ordering.  When the first subscript is numerical, 
it refers to the combatant based on order as measured by the critical turn 
meter value.  The second subscript takes two forms.  When it is alphabetic 
it refers to the referenced term for the combatant.  The second case, ( ), 
refers to an as of yet unknown turn number.  The third case, such as (k1), 
refers to the turn on which the parenthetical holds. 

p Integer valued subscript referring to turn number. 
q Integer valued subscript referring to turn number. 
r Integer valued power term for the power series expansion. 
s Speed. Continuous variable greater than or equal to zero. When 

subscripted refers to the speed of the subscripted combatant. 
x An independent variable. 
y A dependent variable. 
α Integer valued coefficient in a linear relationship. 
β Integer valued coefficient in a linear relationship. 
γ Integer valued coefficient in a linear relationship.  Also used for partial 

fraction expansions. 
δ Integer valued coefficient in a linear relationship. 
κ Positive valued integer 
λ Positive valued integer. 
η Subscripted integers with the subscript referring to the combatant. 
τ Tick rate. Continuous variable greater than or equal to zero. When 

subscripted refers to the tick rate of the subscripted combatant. 
σ Speed division. Positive integer valued. When subscripted, if the subscript 

is alphabetic, it refers to a case without ordering.  If the subscript is 
numerical, it refers to the case in which ordering is based upon critical 
turn meter value.  

ξ An integer valued common divisor. 
ζ Subscripted integers with the subscript referring to the combatant.
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