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Abstract: Gene therapy is an advanced treatment approaches 

which are involved in insertion of genetic materials to the target 
cells for diseases management. It involves correcting defective 
genes that are appropriate for treating diseases caused by single 
gene failure in particularly suitable rare diseases e.g., cystic 
fibrosis, adrenoleukodystrophy beside liver diseases and cancers. 
It  is looking forward to transfigure modern medicine for cure of 
numerous inherited metabolic liver disorders. Urgently, effective 
and continuous advanced biotechnology is required in developing 
nanoparticles vehicles, deliver mRNA biomolecules and target 
host cell genome. This is to reinsert the missed gene expressions, 
functional proteins within the target cells and disabling many 
obstacles. Gene editing aims to change the microorganism genetic 
material of DNA. It permits insertion of genetic materials, 
deletion, or alterations within a particular location within the 
gene. Many procedures have been investigated for getting gene 
editing. Currently, CRISPR-Cas9 is well designed DNA editing 
system and identified as regularly interspaced short palindromic 
repeats and associated with protein-9. The CRISPR-Cas9 system 
is cheap and fast, with high accuracy and efficiency comparing to 
other genetic editing tools. Molecular progress will avoid 
stimulating innate immunological responses. Many research 
studies started clinical trials based on the allowed advance in 
nanotechnology and molecular biology tools. They highlighted 
therapies to treat such liver disorders with safe and effective 
approaches. This study summarizes and discusses the progress in 
liver diseases gene therapy with a hope for success of clinical trials 
applications through advanced therapeutic potentials and gene 
editing. 
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1. Introduction 
Gene therapy (GT) based on shifting the affected genes 

inside the human organ to control and manage the disease by 
the way of improving the organ's ability to attack a wide series 
of diseases, such as liver diseases, cancer, diabetic problems, 
hemophilia, cystic fibrosis, AIDS, heart disease, and 
management related to most inherited metabolic liver disorders 
[1].  

GT started with understanding and recognition of DNA used 
in transformation process to change the genome code and the 
phenotype related body systems disorders. It is known that viral 
oncogenes can be inserted into the human genome leading to 
new engineered genome that code the viral proteins, including 
human hematopoietic stem cells (HSC) [2]. Proper engineered 
vectors are able to effectively transducing HSC safely.  
Successful GT requires developing vectors, design effective 
materials, methods, equipment and effective biotechnology 
tools to be able to manipulate and exchange genomic DNA, 
improving, acquiring, purifying and maintaining of cultures 
HSC [3]. 

Clinical approaches-based gene editing technologies of 
recombinant adeno-associated virus (rAAV) vectors related 
management of liver inherited disorders will have promising 
consequences in GT. But the DNA translational processes 
related GT are still unclear. This is because of raising patient’s 
immune system interactions with the vector conditions, 
efficiency of management duration and safety.  In addition, it is 
suggested that GT based rAAV with a highly used doses is 
suggesting more innate immune responses effects. Similarly, 
the genomic integration of rAAV and the edited gene sequences 
will raise the probability for getting carcinogenicity risks [4]. 

Currently, GT is accessible only for clinical trials, more 
excessive understanding of the preparation of patients and tools 
were required to enhance engraftment manipulations of the 
modified HSC [5]. Challenging ideas in essential clinical and 
experimental trials are assessing the efficacies and causes 
related adversative events has been advanced. Generally, 
abnormal proteins production in the infected cells would 
demonstrate cells to be fatal causing diseases. Therefore, the 
dented bio- products of proteins are substituted by insertion of 
genetic engineered DNA into these cells based on GT tools and 
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techniques. It is urgent to consequence the behavior in clinical 
trials, observation of achievements and difficulties happening 
in performing these trials [6]. Many experimental research 
studies provide a new approach in gene therapy with mRNA 
using multi-gene editing strategies as novel trend for 
management of rare genetic metabolic disorders leading to high 
morbidity with limited chances of therapy [7]. 

Mainly, the liver takes part in biosynthesis of many 
biological materials e.g. bile salts, plasma proteins and 
detoxifications process. In addition, it is responsible for storage 
of glycogens, fat soluble vitamins and hormonal regulations. In 
addition, it takes part in metabolic pathways of iron 
carbohydrates, fat and proteins [8]. Thus, liver organ is 
considered the original site for various inherited metabolic 
disease related to protein secretions as evaluated and 
characterized in hemophilia [9]-[14]. Research studies explored 
in vivo and in vitro results of codon and non-coding transgenic 
sequences are revealing a clear deal about vector constructions, 
mapping design and constructions of long-lasting diseases 
corrections within many of animal models [15], [16]. 

Consequently, the liver organ is the major target for GT. GT 
tools supply genes for getting treatment of lost functions related 
to diseases. Developing new approaches for getting precised 
modified cellular genomes [17] and silencing the defective 
genes causing pathology [18]. New system for DNA sequences 
editing biotechnology [CRISPR–Cas9] was developed which is 
the best exciting scientific discoveries of the recent decade. It is 
looking forward giving promising improvements of versatility 
and precision via base editing. 

The main target for GT development for achieving the 
allowed targets are; i) Improvement to understand genetic 
causes of different inherited diseases -based on advances in 
sequencing data base of different bioinformatics molecular 
tools. ii) More clearance for genetic vectors delivery among 
cytotoxicity, pharmacokinetics and stability iii) Developing 
more efficient genetic-based in vitro and in vivo therapeutic 
strategics models. iv) Developing advanced tools for gene 
delivery into the target tissues. v) Saving wide scale for viral 
vectors manufacturing skills [19]. 

Liver gene therapies updates avoid all complications like 
immune response and cloning mutagenesis-based 
nanotechnology tools during application. It clears the 
importance of non-coding segments of a genome, thereby 
enchanting gene therapy efficiency [20]. GT is intermediated 
by rAAV vectors as a new trend of therapeutic choices among 
genetic liver diseases. The most recorded wide experience has 
been expanded in management of hemophilia. In such disorder 
there is no liver pathologic lesion, but it is noted that the liver 
is not able to synthesize the coagulating factors related to blood 
clot formation. 

Current issue discusses gene therapy in liver disease based 
on nanotechnology for different RNA and DNA sequences 
editing tools in research and focusing on both the efficacy and 
safety of therapeutic tools. 

2. Strategies of Gene Therapy 
Recently, conventional GT based on supplementation of 

gene-based adeno‐associated viral vectors [21]. Various 
strategies for GT that have been experienced in vitro 
experiments and clinical tails levels based on encapsulated 
therapeutic mRNA and gene editing [22]. These include   i) 
replacement of a transmuted genes that originate the present 
disorders based on a strong normal gene copy, ii) disabling 
transmuted genes that causing the pathogenesis, iii) presenting 
an original gene coding a therapeutic material to contest 
diseases, iv) supply of   a converting enzyme to the target organ 
cells to inactivate its cytotoxic metabolite [23].      

Experimental in vivo cells treatment procedures necessitate 
surgical tools to get cells, then extend and infest them within 
viral vectors. The DNA holders comprising missed functional 
gene is implanted within the vectors for transmission, then 
target cells are returned to the operating system. The direct 
transports to vivo require accessing the target tissue to avoid 
gene overexpressing, DNA cassettes deliver proper inhibitors 
based on small inhibitory RNA or antisense oligonucleotides 
[24]. 

 Gene or DNA cassette or DNA holder system contains a 
gene and a recombination site. It is a form of transferrable 
genetic component that contains a genetic sequence with a site 
for recombination of the new DNA sequences edit. It is usually 
holding a single gene with 500–1000 base pairs of DNA 
sequences. They are incorporated into the intron or freely as 
circular DNA. 

3. Monogenic and Polygenic Disorders 
Till now, GT technologies are experimental approaches in 

which therapeutic genes are used for treatment or prevention of 
various disorders, including monogenic and polygenic 
disorders and cancers. They comprise detection of mutant genes 
causing disorders with giving therapeutic genes to patients 
target cell to reinvest the normal functions. Last decades, 
research studies investigated many genetic tools and gene 
transforming systems to manage monogenic diseases among 
gene therapies. Many problems have been discovered that are 
related to gene expression, immunogenicity, inefficient 
delivery, capacity limitation, genomic integration, limited 
tissue specificity and toxicity [25]. 

Monogenic disorders (MD) result from mutations in a single 
recessive or dominant gene with interruption of normal 
arrangement. They are characterized as “Sex-linked or 
Autosomal” They include Hemophilia, Osteogenesis 
Imperfecta, ichthyosis, thalassemia and others [26], [27].  
Monogenic recessive disorders need coding genes for 
expression. Although they often show effective therapy levels, 
they are lower than those in normal cases.  Monogenic 
dominant diseases involve abnormal gene to be silenced. Thus, 
replacement of dysfunctional gene with the corresponding 
healthy one will direct to achievement of the cure [28]. 

Polygenic disorders arise more frequently in human than 
monogenic disorders. They result from effective collective 
actions or interactions of multiple genes. It is noted that genetic 
interactions complication doesn’t follow the equivalent method 
related monogenic disorders. Non genetic factors are a part of 
multiple gene diseases that participate in the disorders 
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manifestation with increased risk of evolving the disease e.g. 
coronary heart diseases, autoimmune diseases, obesity, liver 
hypertension, cancers, atherosclerosis and others [29]. 

4. Genomic DNA and Recombinant cDNA in Gene 
Therapy 

Active GT protocols depend on significant selected 
transgenic DNA sequence. Many research studies on gene 
delivery based on the synthetic recombinant cDNA with limited 
length sequences and bases. This to fit different virus-related 
vectors e.g. lentiviruses, retroviruses and adeno associated virus 
[30], [31]. 

The most common advantages for recombinant cDNA are i) 
short sequences, ii) lack of the original gene’s controlling base 
sequences, promoters, enhancers, introns, and/or poly(A) 
sequences for promotion of experimental transgenic animals 
[32]. In addition, it is related to some disadvantages like i) 
causing transgenic nonsense and overexpression of proteins 
[33], ii) failure for getting applicable and functional gene 
expression within the target cells [34], [35]. By the same way, 
the advantages of using genomic DNA applications-based 
exons and introns or any other non-coding regions are i) saving 
capacity to improve nuclear mRNA constancy with 
transportation for getting pure spliceosome complex, ii) getting 
transgenic sequences like chromatin conformation that prevents 
protein access to precise DNA regions, to control DNA 
replications, to support DNA repairs and transcriptions [36], iii) 
some introns may raise recombinant proteins synthesis [37], iv) 
improving transcriptional effectiveness among experimental 
transgenic animals [38], [39], v) removal of several cDNA 
deficiencies related to  nonsense gene, loss of regulatory 
elements and down regulation pathways by chromatin [40], vi) 
transgenic locus of the genome protects cells from destructive 
effects of overexpression’s with long term of regulations of 
transgenic expression [41]. Therefore, practice with transgenic 
genomes results in more further tissue specificity, endogenous 
and physiological gene expression regulation based on native 
elements of regulations. However, genomic DNA with non-
coding sequence elements act as predicted talented strategies 
for disabling many obstacles among GT procedures.  

5. Liver Disorders Gene Therapy 
In last decades, liver transplantation was the only therapeutic 

handling. There were significantly drawbacks among 
orthotropic liver transplantation, [42] with investigating 
alternate therapeutic methods. Chronic liver disorders directed 
and encouraged developing future rapid treatment 
manipulations with stem cell. There are two main mechanisms 
getting treatment i) with progenitor cells or donor stem cells, ii) 
replacement of damaged cells function with getting 
differentiation into practical cells, iii) constructing bioactive 
factors that induce proliferation, developing progenitor cells 
and immunoregulatory factors that control inflammation [43]. 

Liver fibrosis is a consequence of recurrent and persistent 
hepatocellular damage with getting inflammations. It stimulates 
extra liver immune cells causing stimulation of hepatic stellate 

cells. The consequence of determined liver tissues damage over 
several years causes permanent scarring and liver failure 
terminating in liver cirrhosis [44]. Liver fibrosis and cirrhosis 
treatment are based on different types of stem cells, i) bone 
marrow mesenchymal stem cells, ii) mesenchymal stem cells, 
iii) umbilical cords mesenchymal stem cells and iv) liver-
derived mesenchymal stem cell. Stem cell-based therapy is less 
invasive among patients more than surgical tools with little 
risks of immune system rejection compared to traditional 
treatment tools [45]. 

The liver organ is the key target for GT, representing 
different metabolic disorders inheritance of single-gene or 
multifactorial etiologies and hepatocellular carcinoma.  In the 
past, there was doubt around the clinical values due to 
efficiency, toxicity, specificity and limits around the immune 
system responses [46]. Currently, there is a great improvement 
in vector technologies and molecular biology techniques. 
Future perceptions of GT protocols in hepatology based on 
significant information related in-vitro experiments and 
different clinical trials are expected [47]. 

CRISPR/Cas9 is a new trend for gene sequences editing 
biotechnology with getting an important achievement in 
treatment of various genetic disorders in experimental animal 
models [48]-[50]. Recently, it has been applied in   the 
transthyretin amyloidosis research [51]. Cas9 ribonucleoprotein 
RNPs gene (ExosomeRNP) was loaded to purified isolated 
exosomes from hepato-stellate cells-based electroporation. 
Exosomes are considered extracellular re-formed vesicles 
within a wide of cells with conjugated with phospholipids 
bilayer structure known as a “cellular junk [52]. 
ExosomeRNP presented strong therapeutic actions among acute 
liver injuries, hepatocellular carcinoma and liver fibrosis based 
experimental mice models based p53 up-regulatory modulator 
of apoptosis (PUMA), K (lysine) acetyltransferase5 (KAT5) and 
cyclin E1 (CcnE1) respectively. It takes part in genome-editing 
delivery system as allowed in figure 1 [53], [54]. 

 

 
Fig. 1.  The genome-editing delivery system, termed as [Exosome RNP] 

for loading Cas9 RNP into exosomes from hepatic stellate cells (HSCs; LX-2) 
for the treatment of different liver disorders 

 
Heat shock proteins (HSP47) were applied in GT liver 

fibrosis. They are collagen-binding molecules sited in 
endoplasmic reticula.  It takes part in collagen biosynthesis and 
depositions. HSP47 molecules have significant role in fibro 
genesis. However, HSP47 deficiencies in experimental mice 
take parts in development of liver fibrosis [55]. Methylmalonic 
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acidemia is one of rare metabolic liver disorders. Cases 
treatment based on dosed lipid nanoparticles (LNPs) carrying 
methyl malonyl‐CoA mutase mRNA. There are three 
nanoparticles’ vehicles delivering mRNA to hepatocytes, i) 
Mtx-LNP, LNP established by Moderna Therapeutics, ii) 
hybrid mRNA nanotechnology; including a micelle polymer for 
hepatocyte-specific delivering with endosomal escaping and an 
inert LNP that protects the mRNA, iii) TT-lipid containing 
LNPs (TTLLNs) [56]. 

In hepatocytes cells, LNPs encapsulate mRNA particles then 
transport into cytoplasm. This is because of LNPs contain four 
lipids, i) diffusible polyethylene glycol lipid (PEG), ii) an 
ionizable lipid, iii) cholesterol, iv) neutral helper lipid. Thus, 
lipid molecules are vital to protect from early phagocytosis 
capturing. In addition, Ionizable lipids enable cellular uptake of 
negative charged RNA particles forming mRNA/LNP complex 
then escaped into cytosol [57]-[58]. Continuous improvement 
of LNPs as delivery vehicles are required to increase endosomal 
escaping, to overcome liver injury and to provoke 
immunological responses [59]. 

Taking in consideration that liver hepatocytes play a critical 
role in synthesis of missed proteins responsible for hemophilia 
A and B. Treatment tools-based on nanoparticles for the 
transportation of mRNAs particles that are coding for clotting 
factors VIII and IX, in which hepatocytes secretions can be 
engineered to synthesize recombinant proteins into circulations 
[60]. Nanoparticles of LNP and TTLLNs were designed to treat 
hemophilia in mice using either single doses of them with 
encapsulating human FIX (hFIX) with hFVIII mRNA or 
different doses e.g. [0.25-0.50] mg / kg resulted in 12-h plasma 
levels of hFIX protein [61], [62]. 

Hemophilia B was recognized as an X-linked recessive 
genetic bleeding disease due to defects in the factor IX gene. 
Hemophilia B severity is classified by factor IX activity. It is 
subsequently causing a partial or complete deficiency of 
coagulation factor IX.  Recently, The US Food and Drug 
Administration (FDA) has approved GT for Hemophilia B. 
[63]-[65]. Hemophilia A is still near to acceptance.  several 
trials of rAAV-based liver-targeting GT are in advance with 
promising consequences [66]. We hope the treatment with gene 
therapy for hemophilia A will be soon achieved. It seems that 
we will see an effective GT for hemophilia A with rAAV vector 
soon in the future according to the current clinical research [67]. 

6. CRISPR-Cas Systems & Gene Supplementation and 
Gene Editing in Liver 

There is a wide range progress for genome sequences 
technologies editing.  Recently, three genome editing systems 
were discovered in the world, i) zinc finger nucleases (ZFNs), 
ii) transcription activator like effector nucleases (TALENs), 
and iii) clustered regularly interspaced short palindromic 
repeats nucleases systems (CRISPR-case) [68]-[70]. They are 
consider to completed correction of different pathogenic 
mutations, to get aid in immunotherapy by discovering critical 
genes for cancers then allow solving based problems in xeno-
transplantation of organs [71]. 

CRISPR is an acronym for Clustered Regularly Interspaced 

Short Palindromic Repeat. The repetitive DNA sequences of 
CRISPR are detected in the bacterial genomes and a wide range 
of microorganisms. They act as a vital key component of the 
adaptive immunity for the bacteria and is responsible for 
protection against viral invasion-based destructions of viral 
genome as detected in figure 2 [72]. 

 

 
Fig. 2. 

 
Figure 2 is representing CRISPR-Cas9 Genome Editing 

Technology that investigates role up of CRISPR array 
sequences for getting genomic crRNA complex. (1) Once the 
viral DNA is injected into the cell, a section of it can be 
incorporated into the bacterial genome and will be inserted the 
repeated palindromic sequences. this will be call spacers [we 
can see 3 spacers]. Potentially, from 3 different viruses 
sandwiched in between the repeated palindromic sequences will 
form CRISPR, (2) CRISPR array RNA sequences undergo 
transcription to form CRISPR RNA [pre-crRNA], (3) Cas9-
nuclease protein, enzyme [CRISPER-associated proteins from 
S. pyogenes] that are involved DNA cleavage at specific 
nucleotide sequences like scissors, (4) Tracr RNA:  These are 
complementary sequences and can anneal to the spacer 
palindromic repeats in CRISPR , A complex of pre-crRNA, a 
tracr RNA, and a Cas9 protein, (5)Ribonuclease III enzyme [ 
RNaseIII] will cleave the strands in between these complexes 
leaving us with individual crRNA complexes producing 
effector complexes, The cell now is ready to defense against 
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The Invader whose genome produced that crRNA complex, 
(6)The new complex encounter a section of the viral DNA 
which is complementary to the crRNA, the nuclease enzyme 
will coordinate and recognize a short sequences unique to viral 
genome [Protospacer adjacent motif: PAM ], then snabs both. 

Genomic editing system has two groups. First is nuclease‐
free that include long chain DNA sequences that are 
homologous to the target cells region. It represents the selected 
editing by homologous recombination [73]. Although, it is 
extremely safe and specific, the editing process efficiency is 
low. Second is nuclease‐guided in which integration of 
nucleases generates breaks double or single stranded DNA 
(DSB-SSD) in the target cell [74]. CRISPR-Cas9 type2 editing 
technology is the most generally used in genome editing in 
different trails in liver research diseases. However, the highest 
effective genome editing is referred to getting DSB in the 
among chromosomal sequences target cells [75], [76]. Current 
research in vivo studies developed direct liver genome editing 
gene therapies to evaluate the sensitivity and specificity for 
delivering the system in the liver cells [77], [78]. 

7. The CRISPR-Cas Gene Editing Technique  
The CRISPR-Cas is consisted of, 1) A cas-protein enzyme 

that can cut DNA and ii) RNA-guided that recognize DNA to 
be edited in bacterial adaptive immune systems. It stores the 
memory of foreign DNA in single spacer sequences derivative 
from movable genetic elements then inserted in CRISPR arrays 
[79]. It possessed nuclease subunits, termed RuvC and HNH 
where each one cut one strand of the target double-stranded 
DNA in the cell [80]. CRISPR-Cas9 system Type II is 
commonly used in many CRISPR-Cas editing systems and well 
evaluated [81]. CRISPR spacers Transcripts recognize the 
related sequences and direct Cas-nucleases to their unique 
target sites upon new encounters with familiar movable genetic 
elements [MGEs] [82]. 

There are two classes of CRISPR/Cas systems I & II with 
many types and subtypes. Class I effectors contain many 
subunits while class II effectors are single large proteins. Class 
II is more developed than class I. CRISPER/Cas types are 
targeting DNA except type VI is applied to target RNA. 
Subtypes based on definite Cas endonuclease which is 
responsible for the cleavage and mode of action as shown in 
(table 1) [83]. Current liver disease related gene therapies 
nanotechnologies have sounded advance throughout 
optimization pf vectors types and advanced new tools e.g. as 
induction of pluripotent stem cells in mixture with current 

models of genetic editing (CRISPR-Cas9). 

8. Limitations of Liver-Targeted Gene Therapy  
Although clinical trials of recombinant adeno-associated 

virus vectors (rAAV) based GT are welling for getting 
promising outcomes, there are different significant restrictions. 
Particularly, the molecular structures vectors e.g. capsid, 
genome foreign DNA elements, transgenic proteins bio 
materials products will cause host immune responses, thus it 
will prevent effective delivering and long-term gene expression 
of the transgenes. In additions, activation of immune system 
causes adverse measures and reduces efficacies of GT 
bioproducts. Also, we must give attention to hepatotoxicity, 
complement activations, neurotoxicity and genotoxicities [96]. 

9. Improvement Strategies of the Safety of (rAAV)in Liver 
Disorders 

Although, research studies-based adeno-associated virus 
gene therapies have rapidly developed among the last decade, 
more improvement in safety and quality of treatment plan 
strategies are required. These can be achieved by the allowed 
suggested study planes; i) more development of (rAAV) vectors 
to reduce the dose required for the target liver, ii) estimations 
for quality protocols for detection and eliminations of defects 
related preparations of rAAV vectors with reducing toxicity. iii) 
investigations for bioassays foreseeing and detecting hazards of 
adverse effects based additional prevention measurements. iv) 
developing estimation tools for of viral genomes doses per 
kilogram and total administered viral genomes for patients and 
pediatric patients with the pre-existing liver conditions v) 
investigations of new management tools for removal or 
inhibition rAAV-related antibodies and blocking any 
complement activation. vi) decreasing immunostimulant 
contents and the elements of potential genotoxicity in different 
therapeutic vector genomes vii) improvement of preclinical 
diseases models that mimic human pathological as closely as 
possible by evaluating their efficacy, safety, identifying their 
possible adverse effects, and developing mitigation plans [97].  

10. Conclusion 
Gene therapy in liver disorders is complicated and associated 

with many genetic risks.  Increasing number of successful 
clinical trials approaches of gene therapy promise more 
advance. Gene therapy strategies include substitution of 
defective gene bioproducts, overexpressing of extrinsic or 

Table 1 
Demonstrations for the most common CRISPR editing systems classes, types, subtypes Cas endonuclease and target genetic materials 

 Classes of CRISPR-Cas Editing System  
Classes Type  No. of sub 

types 
Cas 
endonuclease 

Target Requires 
Trans RNA 

Target clinical trails References 

Class I Type I 6 Cas3 DNA or 
RNA 

Target 
degradation 

Influenza [84]-[85] 

7 Cas9 DNA No Hematological malignancies & 
Hepatocellular carcinoma 

[86]-[87] 

Type II 4 Cas10 DNA/RNA No Uncharacterized  [88]-[89] 
Type IV 1 -- -- -- Uncharacterized  [90]-[91] 

 Type II 3 Cas9 DNA Yes Cancer immunotherapy [92]-[93] 
Class II Type V 3 Cas12 DNA Yes (subtype I) Infectious and Zoonotic Diseases [94] 
 Type VI 3 Cas13 RNA NO COVID-19 [95] 
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intrinsic genes and interruption of exact genes expression. 
Therefore, more intensive experimental therapies are required 
for getting more advances in clinical trials overcoming different 
obstacles in liver diseases. 

Although currently clinical research studies are using diverse 
of viral vectors, but challenges like cytotoxicity, 
carcinogenicity, immunogenicity and still need to be managed.  

More advanced research studies are required for getting 
gene-editing technologies, vectors improvements, suiciding 
genes, tumor suppressing genes, anti-tumor angiogenesis, gene 
silencing, and oncolytic virotherapy for monogenic and 
polygenic disorders. Currently, CRISPR-Cas nanotechnology 
editing DNA is providing a novel trend for visualizing the 
genomes. It has been applied in gene function data analysis, 
gene therapy for some disease and developing drugs that are 
promising. Although strategies of gene editing export powerful 
tools for particular correction of genetic disorders among direct 
developing genome sequences, they pose extra safety risks, like 
oncogenicity that are owing to mutagenesis insertion. 
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