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Abstract: Exam seating arrangements must be carefully 

designed to reduce academic dishonesty.   Many institutions make 
deliberate seat assignments to minimise the possibility of 
proximity-based collusion. However, typical methods frequently 
fail in large student populations, stressing the importance of 
optimisation strategies. This work investigates the use of 
Simulated Annealing (SA) to generate near-optimal seating 
arrangements, considering limitations such as students' courses, 
departments, and academic levels. The SA algorithm is 
constructed and assessed using synthetic data for a 40-student 
examination hall. The results indicate that SA effectively reduces 
adjacency violations and has practical applications in institutional 
exam seating arrangement planning. 

 
Keywords: Constraint Satisfaction, Examination, Simulated 

Annealing, Seating Arrangement. 

1. Introduction 
Arranging students' seats during exams is crucial for ensuring 

fairness and ensuring that available spaces are used efficiently. 
In many institutions, students are seated based on factors such 
as the course they are taking, their academic level, and the 
department to which they belong. While this may seem 
straightforward, the process becomes more complicated with 
many departments and overlapping courses. At that point, 
traditional seating methods, often based on simple rules, 
struggle to handle the complexity. The result is frequently 
poorly organised seating plans that waste space and make it 
easier for academic misconduct to occur. 

Numerous heuristic techniques have been developed to 
overcome these issues, including the greedy approach [1] and 
the round-robin policy [2], which iteratively makes local 
judgments based on immediate restrictions.  

In contrast, this paper investigates the feasibility of using 
Simulated Annealing (SA), a metaheuristic optimisation 
technique inspired by the annealing process in metallurgy, to 
generate near-optimal examination seating arrangements. 
Unlike greedy algorithms trapped in local optima, SA enables a 
more global exploration of the solution space by periodically 
accepting inferior solutions, particularly in the early phases of 
the search. This feature allows the algorithm to escape local 
minima and explore alternative configurations.  

Furthermore, SA is computationally cheap and scalable, 
making it appropriate for larger, constraint-laden situations that 
would be computationally prohibitive for exhaustive  

 
approaches like backtracking [3]. This research evaluates the 
effectiveness of Simulated Annealing in generating exam 
seating configurations that minimise adjacency violations while 
adhering to various constraints. The approach is tested on 
synthetic data that simulates a typical examination hall 
environment, and the findings show that it is feasible in 
academic institutions. 

2. Review of Related Works 
The work in [1] proposes a web-based application that 

utilises a greedy graph colouring algorithm to automate 
examination seating arrangements based on conflict 
constraints, such as shared courses. While it provides a simple 
and fast solution, it often fails to find globally optimal 
configurations and does not consider multi-level constraints 
such as student levels or departmental groupings. [2] introduced 
a Python-based GUI application utilising a round-robin policy 
to automate seating arrangements, ensuring that no two students 
taking the same exam are seated on the same bench. This 
approach aimed to prevent cheating by systematically 
distributing students across available seating. However, its poor 
scalability and lack of adaptability to overlapping courses or 
shared departmental structures make it inadequate for more 
complex institutional setups. [4] explored robustness 
approaches for the examination timetabling problem under data 
uncertainty. They discussed various robust optimisation 
techniques and analysed their impact on real-world instances, 
emphasising the importance of accounting for uncertainties in 
scheduling. Although it improves reliability in dynamic 
environments, it is computationally intensive and less focused 
on fine-grained seating-level constraints such as adjacency 
avoidance. [5] proposed an optimised approach using Weighted 
Constraint Satisfaction Problem (WCSP) techniques to enhance 
timetabling, hall distribution, and seating arrangements. Their 
method incorporated dynamic algorithms capable of adapting 
to varying institutional needs, demonstrating significant 
improvements in reducing scheduling conflicts and optimising 
space utilisation. However, it struggles with runtime 
performance in very large-scale datasets, and accuracy heavily 
depends on well-tuned weights for constraints. [6] Applied a 
simulated annealing algorithm to the faculty-level university 
course timetabling problem, considering complex constraints 
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such as double majors and shared classrooms. Their approach 
yielded optimal solutions within reasonable computational 
times, underscoring the efficacy of simulated annealing in 
addressing complex scheduling scenarios. However, their 
model was applied at the faculty level, rather than being tailored 
to examination seating, where adjacency and fairness metrics 
play a more critical role. [7] Introduced a fuzzy logic-based 
software package, "CUB", for developing classroom seating 
arrangements to reduce student distraction. Their approach 
combined fuzzy inference systems and clustering techniques to 
generate seating plans that minimise classroom distractions, 
suggesting potential applicability in examination settings. The 
solution is not optimised for high-density examination settings, 
where the primary goal is to prevent collusion rather than a 
behavioural distraction. 

This paper contributes to the existing body of knowledge by 
proposing a simulated annealing-based approach that addresses 
these limitations, offering a scalable and efficient solution for 
optimising examination seating arrangements in academic 
institutions. 

3. Problem Formulation 
The examination seating arrangement problem is modelled 

as a combinatorial optimisation problem, where the objective is 
to assign students to seats in a way that minimises the likelihood 
of academic dishonesty while satisfying several institutional 
constraints.  

The problem involves mapping a set of students. 
 

𝐷𝐷 = {𝐷𝐷1, 𝐷𝐷2, … … … … … … . . 𝐷𝐷𝑛𝑛} 
 
to a set of seats 
 

𝑆𝑆 = {𝑆𝑆1, 𝑆𝑆2, … … … … … … . . 𝑆𝑆𝑛𝑛} 
 
In the examination venues, the constraints are met, and the 

cost function is minimised. 

A. Objectives 
1. Minimise adjacency violations: ensure that students 

writing the same course are not seated beside each 
other. 

2. Maximise distribution across departments and levels: 
reduce the possibility of collusion by distributing 
students from the same department and level apart. 

3. Ensure seat utilisation efficiency: all seats should be 
assigned with minimal wastage. 

B. Constraints 
1) Hard Constraints (Must be Satisfied) 

a. Each student is assigned exactly one seat. 
b. No two students share the same seat. 
c. Students taking the same course must not be seated in 

adjacent seats. 
2) Soft Constraints (Preferably to Satisfy) 

a. Students from the same department or level should not 
be seated adjacent to each other. 

b. Students should be evenly distributed across rows and 
columns to discourage collaboration. 
 

Mathematical Representation: 
Let,   

 𝐴𝐴𝑖𝑖𝑖𝑖 = 1 If the student i and student j 𝑗𝑗 are taking the same 
course. 
 𝐵𝐵𝑖𝑖𝑖𝑖 = 1  If the student 𝑖𝑖 and the student 𝑗𝑗 are from the same 
department.      
 𝐶𝐶𝑖𝑖𝑖𝑖 = 1 If student 𝑖𝑖 and student 𝑗𝑗 are from the same academic 
level       
 𝑎𝑎𝑎𝑎𝑎𝑎�𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗� = 1 if 𝑆𝑆𝑖𝑖 is adjacent to 𝑆𝑆𝑗𝑗 
 

Equation 1 minimises the cost function. 
 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ (𝛼𝛼𝑖𝑖,𝑗𝑗 𝐴𝐴𝑖𝑖𝑖𝑖 +  𝛽𝛽𝐵𝐵𝑖𝑖𝑖𝑖 +  𝛾𝛾𝐶𝐶𝑖𝑖𝑖𝑖) ∗  𝑎𝑎𝑎𝑎𝑎𝑎�𝑆𝑆𝑖𝑖, 𝑆𝑆𝑗𝑗�    (1) 
 
Where 𝛼𝛼, 𝛽𝛽, and  𝛾𝛾 can be tuned based on institutional 

priorities or empirically optimised to reflect the severity of 
constraint violations. 

4. Implementation 
The examination seating optimisation model was developed 

in Python, chosen for its simplicity, flexibility, and rich 
ecosystem of libraries supporting data processing and 
visualisation. Key libraries included random for generating 
student attributes and sampling, math for computing the 
Simulated Annealing acceptance function, NumPy for efficient 
array operations, and matplotlib.pyplot for visualising cost 
convergence, penalty heatmaps, annotated seating grids, and 
final arrangements. Development was conducted in Jupyter 
Notebook, offering an interactive environment ideal for testing 
and visualisation. Outputs such as graphs and seating layouts 
were saved as images for documentation. The Simulated 
Annealing algorithm operated with an initial temperature of 
1000, a final temperature of 1, a cooling rate of 0.95, and up to 
1000 iterations, parameters tuned to balance exploration and 
convergence efficiency. 

5. Result Evaluation 
Figure 1 shows how the total penalty (or “cost”) evolves over 

iterations. The algorithm begins with a high penalty (above 
300) due to poor initial random seating, where many students 
from the same course, department, or level are seated adjacent 
to each other. As iterations progress, the penalty steadily drops, 
reaching a stable minimum of around 160; the cost function 
penalises adjacent students with: 

i. Same course: +5 points 
ii. Same department: +3 points 

iii. Same level: +1 point 
The stepwise drops in the plot highlight where the algorithm 

discovers better configurations; eventually, improvements 
diminish, and the temperature reduces, leading to convergence. 
In conclusion, the algorithm successfully minimised conflicts 
over time, demonstrating the effectiveness of simulated 
annealing in solving this combinatorial optimisation problem. 
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Figure 2: The heatmap visualises per-seat penalty scores 
based on the number of same-course, same-department, or 
same-level students seated adjacent (top, bottom, left, right). 

i. White/yellow zones = high local penalties (more 
conflicts). 

ii. Red/black zones = optimised areas with fewer 
conflicts. 

A. Penalty Calculation Per Seat 
i. Check the 4-neighbour seats (N, S, E, W). 

ii. Increments penalty based on similarities 
(course/department/level). 

 

 
Fig. 1.  Convergence plot of the simulated annealing algorithm 

 
In contrast, most of the seating layout is dark (optimised), 

with one or two lighter spots, suggesting minor clustering of 
similar students still within acceptable limits. This confirms that 
the overall seating has been effectively optimised, but some 
high-penalty zones remain. 
 

 
Fig. 2.  Penalty intensity heatmap of the seating grid 

The layout of the examination venue and how each student is 
seated based on the optimised results is presented in Figure 3. 

Each seat is labelled with the student's ID and their respective 
course. The grid shows a well-distributed arrangement of 
students across various courses and levels. This annotated grid 
provides a clear layout of the optimised seating arrangement: 
 

 
Fig. 3.  Final seating arrangement: Student ID with course 

 
a. Each box represents a seat. 
b. Labels show: Student ID (2-digit), Course code (e.g., 

CSC101, MTH101, PHY101) 
Key observations made are that there is no clear clustering of 

students taking the same course, each row and column show a 
fairly diversified mix of courses, and the algorithm successfully 
interleaves students to reduce cheating risk and maintain 
fairness. This grid validates that the seating is well-distributed, 
satisfying the optimisation goals. 

 
Fig. 4.  Final seating arrangement (Student IDs) 

 
The final seating arrangement in Figure 4 is represented in a 

5x6 grid (5 rows and 6 columns), where each cell contains the 
Student ID assigned to that seat after optimisation using 
Simulated Annealing. The goal was to ensure minimal conflicts 
by avoiding adjacent students from the same course, 
department, or level, which means each value represents a Final 
Seating Arrangement: Student ID with Course. The seating grid 
is optimised such that students sitting next to each other are less 
likely to share the same: 

Table 1 
Summary of results 

Metric Result 
Initial Cost > 300 
Final Cost ~160 
Penalty Rules +5 (course), +3 (department), +1 (level) 
Iterations Up to 1000 (stopped earlier due to convergence) 
Seating Optimisation High — most conflicts avoided 
Visualisation Tools Cost graph, heatmap, annotated grid, final seating grid 
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i. Course (high penalty) 
ii. Department (moderate penalty) 

iii. Level (low penalty) 
This arrangement reduces the total conflict cost significantly 

compared to a random distribution. 
The summary of the optimisation result is shown in Table 1.  

6. Conclusion 
This paper demonstrates the application of Simulated 

Annealing to optimise students’ examination seating 
arrangements, thereby reducing the risk of academic 
dishonesty. By defining a cost function that penalises adjacent 
seating of students from the same course, department, or 
educational level, the algorithm efficiently searched for a near-
optimal configuration that minimises these conflicts. Through 
iterative seat swapping and probabilistic acceptance of worse 
solutions, the system could avoid local minima and converge 
on a better solution over time. Visual tools such as the cost 
convergence graph, penalty heatmap, and annotated seating 
grid provided valuable insights into the performance and 
effectiveness of the optimisation process. The final results 
confirm that Simulated Annealing is a practical and scalable 
approach for tackling real-world scheduling and arrangement 

problems, particularly in academic settings. This method can be 
further extended for larger seating arrangements, multiple exam 
halls, or integration with automated examination management 
systems. 
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