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Abstract: Pneumonia is a significant cause of mortality 

worldwide, particularly in children under five years, with 
detection from chest X-ray (CXR) images remaining challenging 
due to diagnostic errors common in manual radiographic analysis. 
This study develops a deep learning model for multiclass 
pneumonia classification in CXR images that is computationally 
inexpensive and suitable for resource-constrained settings. The 
proposed approach utilises pretrained models, including 
EfficientNet, MobileNet, RegNet, and ViT, fine-tuned using the 
PyTorch framework, with data augmentation and regularisation 
techniques applied to address class imbalance and overfitting. 
Using a dataset of 5,863 CXR images classified as normal, bacterial 
pneumonia, or viral pneumonia, the fine-tuned models achieved 
high classification accuracy, with ConvNeXt and EfficientNet 
attaining accuracy scores of 83% and 82% respectively. The 
findings demonstrate how data augmentation and regularisation 
significantly improved the models' generalisability, reducing 
overfitting and improving predictive performance. This work 
provides healthcare professionals with an efficient tool for 
multiclass pneumonia detection from CXR images suitable for 
resource-constrained settings. 

 
Keywords: Artificial Intelligence (AI), class imbalance, 

multiclass detection, pneumonia detection, radiography, transfer 
learning. 

1. Introduction 
Pneumonia is a respiratory infection that predominantly 

affects the lungs, causing inflammation of the alveoli and 
bronchial tree. It is commonly categorised into two types: 
community-acquired pneumonia (CAP) and hospital-acquired 
pneumonia (HAP) [1]. Globally, pneumonia remains one of the 
leading causes of death in children under the age of five, 
particularly in sub-Saharan Africa. In 2015, it accounted for 
920,000 of the 5.9 million deaths in this age group, with 
countries such as Nigeria, the Democratic Republic of Congo, 
and Angola among the worst affected [2]. The number reduced 
to 740,000 in 2019 [3]. Although this represents significant 
progress, pneumonia continues to be a public health burden, 
especially in low-resource settings. 

Traditionally, the diagnosis of pneumonia has relied on 
clinical evaluations and radiographic techniques such as chest 
X-ray (CXR) images. However, the manual interpretation of 
CXR images is susceptible to perceptual and interpretive errors, 
often resulting in inaccurate diagnoses. These errors are  

 
exacerbated by the high workload of radiologists and the 
limitations of human perception in detecting subtle variations 
in medical images [4]. Recent advancements in deep learning 
and computer vision have created new opportunities for 
automating the analysis of medical images to provide more 
accurate and timely diagnoses. However, significant obstacles 
persist, including class imbalance in medical datasets, 
overfitting due to large parameter counts in deep neural 
networks, and the high computational costs associated with 
training complex models [5]. Addressing these challenges is 
essential to developing reliable and efficient models that can be 
deployed in clinical settings, especially in low-resource 
environments where computational power and high-quality 
datasets may be limited. 

This study aims to develop a deep learning model for 
multiclass pneumonia classification in CXR images. By 
employing transfer learning, data augmentation, and 
regularisation techniques, the model seeks to improve the 
accuracy and generalisability of pneumonia detection, 
particularly in differentiating between normal, bacterial 
pneumonia, and viral pneumonia cases. The research also 
investigates the performance of lightweight deep learning 
models that can be trained and deployed efficiently without 
sacrificing accuracy. 

2. Literature Review 

A. Overview of Deep Learning in Medical Imaging 
Deep learning has revolutionised medical imaging, providing 

advanced methods for automated analysis and classification of 
complex medical data. Among the most effective models in this 
field are convolutional neural networks (CNNs), which have 
achieved significant success in tasks like detecting pneumonia, 
tumours, and other medical conditions. CNNs, by learning 
image features directly from raw pixel data, offer greater 
accuracy than traditional methods, particularly when analysing 
CXR images [6]. 

For pneumonia detection, CNNs have consistently 
demonstrated high accuracy in distinguishing between normal 
and infected lungs, addressing some of the challenges faced by 
radiologists. This capability is crucial in resource-constrained 
settings, where access to specialised healthcare professionals is 
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limited. Recent studies have shown that CNN-based models 
like DenseNet and ResNet can enhance diagnostic efficiency 
and minimise human error in interpreting CXR images [7]. 

Despite their success, deep learning models in medical 
imaging still face challenges, particularly in handling small 
datasets and imbalanced classes [8]. Overfitting is common, 
especially when training deep networks on limited data. To 
combat this, researchers often employ techniques like data 
augmentation and transfer learning to enhance model 
generalisation [5]. When integrated with CNNs, these 
approaches reduce model complexity and improve performance 
across various medical imaging tasks. 

B. Deep Learning Models for Pneumonia Detection 
Several state-of-the-art models, including ResNet, DenseNet, 

EfficientNet and MobileNet, have been widely adopted in 
pneumonia detection tasks. These models are often pretrained 
on large-scale datasets such as ImageNet, allowing them to 
learn to capture various image features before being fine-tuned 
on medical datasets. For example, Rahman et al. [9] 
successfully fine-tuned DenseNet201 for the multiclass 
classification of normal, bacterial pneumonia, and viral 
pneumonia, achieving an accuracy of 95%. Other studies have 
used models like MobileNet due to its higher computational 
efficiency, achieving the same accuracy score [10]. However, 
most research focuses on binary classification, which ignores 
the challenge of distinguishing between normal, bacterial 
pneumonia and viral pneumonia. This gap has motivated the 
current study to focus on multiclass classification for improved 
diagnostic accuracy. 

C. Transfer Learning and Regularisation in Medical Imaging 
Transfer learning is a widely used deep learning technique in 

which models trained on general datasets, such as ImageNet, 
are fine-tuned for specific tasks. This method can save time and 
computational resources and is especially useful in medical 
imaging due to the scarcity of large, labelled datasets. Hashmi 
et al. [11] demonstrated the effectiveness of fine-tuning 
pretrained models in pneumonia classification, achieving an 
accuracy as high as 98.43%.  

In addition to transfer learning, regularisation techniques 
such as weight decay have been employed to prevent 
overfitting, particularly in deep models with numerous 
parameters. These techniques aim to mitigate overfitting by 
limiting the number of features that the model needs to learn. 
Dropout, along with L1 and L2 regularisation, are examples of 
such methods. Weight decay, a form of L2 regularisation, 
penalises large weights, thus promoting simpler models that 
generalise better to unseen data [12]. 

D. Data Augmentation for Addressing Class Imbalance 
Class imbalance refers to a situation where the sizes of 

classes in a dataset differ significantly. It can be classified into 
multiclass and binary data imbalance. A binary dataset 
comprises only two classes, whereas a multiclass dataset 
includes more than two [13]. While researchers have proposed 
numerous solutions for the binary data imbalance problem, 
various issues related to multiclass data imbalance remain 

unresolved [14]. 
Class imbalance is a common issue in medical imaging 

datasets. If not addressed, it can bias models towards 
overrepresented classes [8]. Data augmentation stands out as 
one of the most effective techniques for tackling this problem. 
By applying transformations such as rotation, scaling, and 
flipping, the training dataset can be artificially expanded, 
thereby enhancing model generalisation. 

E. Multiclass Pneumonia Classification 
Although most existing research has focused on binary 

classification, this study aims to address the more complex task 
of multiclass pneumonia classification by distinguishing 
between normal, bacterial pneumonia, and viral pneumonia 
CXR images using deep learning. As mentioned previously, 
Rahman et al. [9] used DenseNet201 to achieve a multiclass 
classification accuracy of 95%. However, DenseNet201’s high 
computational requirements make it impractical for real-time 
use in resource-constrained environments. In this research, we 
explore the use of more lightweight models such as EfficientNet 
and ConvNeXt, which require less computational power while 
still delivering high accuracy. Results from previous research 
suggest that smaller, less resource-intensive models can be just 
as effective in pneumonia detection, offering a more accessible 
solution for real-time clinical use [15]. 

F. Related Works 
Various studies have explored the use of deep learning 

models for pneumonia detection, with some focusing on 
ensembles of multiple models to improve accuracy. Hashmi et 
al. [11] combined five state-of-the-art models in a weighted 
ensemble and achieved an accuracy of 98.43%. However, 
combining multiple models significantly increases 
computational requirements, making these solutions less 
feasible for real-time deployment. Varshni et al. [16] evaluated 
a DenseNet model for binary pneumonia classification and 
achieved an area under the curve (AUC) score of 80.02%. 
However, their study was limited to binary classification, and 
the model’s complexity and computational cost limit its 
scalability. In contrast, this study focuses on optimising single 
models like ConvNeXt and EfficientNet for multiclass 
classification to ensure high accuracy and computational 
efficiency. 

G. Gaps in Existing Research 
Despite significant progress in using deep learning for 

pneumonia detection, several gaps remain. First, most studies 
have concentrated on binary classification, neglecting the need 
for models that distinguish between normal, bacterial 
pneumonia and viral pneumonia. Additionally, class imbalance 
has been inadequately addressed in many studies, leading to 
models that perform well on the majority class but poorly on 
minority classes. 

This study seeks to fill these gaps by focusing on multiclass 
classification and addressing class imbalance through data 
augmentation and regularisation techniques. Using lightweight 
models like EfficientNet and ConvNeXt also addresses the need 
for efficient models that can be deployed in low-resource 
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settings, providing a practical solution for real-time pneumonia 
detection in clinical environments. 

3. Research Methods and Design 

A. Study Design 
This study employed a quantitative research design, using 

deep learning models to perform multiclass pneumonia 
classification of CXR images. The performance of each model 
was evaluated on the basis of established metrics such as 
accuracy, precision, recall, and specificity. 

B. Study Setting 
The research was conducted in a controlled computational 

environment with data sourced from the publicly available 
Labelled Optical Coherence Tomography (OCT) and Chest X-
Ray Images for Classification dataset, which contains 5,863 
labelled CXR images across three classes: normal, bacterial 
pneumonia, and viral pneumonia [17]. No personal or 
identifying information is included in the dataset, ensuring 
confidentiality and compliance with ethical standards. The 
experiments were performed on an Nvidia RTX A6000 GPU 
with 10,752 CUDA cores and 49 GB of VRAM. This was 
installed in a machine with an Intel Xeon Gold 5315Y 3.20 GHz 
CPU on a machine with 45 GB of RAM. 

C. Sampling 
The CXR dataset has 5,863 labelled samples and was 

randomly split into training, validation, and test sets. Seventy 
percent of the images were used for training, 15% for 
validation, and 15% for testing. To address the class imbalance, 
in which the number of bacterial pneumonia images exceeds the 
number of both viral pneumonia and normal images, data 
augmentation techniques were applied to increase the number 
of samples of the minority classes in the training set. 

D. Instruments and Data Collection 
The primary instruments used in this research were deep 

learning algorithms implemented using the PyTorch machine 
learning framework. Training models from scratch, however, is 
expensive, so pretrained models were employed [18]. Eight 
pretrained models, namely versions of ConvNeXt, 
EfficientNet, MobileNet, RegNet, and ViT, were fine-tuned for 
pneumonia detection using transfer learning [19]. The dataset 
was augmented through rotation, horizontal and vertical flips, 
and scaling to increase the variability of the training data and 
help mitigate class imbalance. 

E. Data Preprocessing 
The training data were pre-processed by applying data 

augmentation techniques to alleviate class imbalance. 
Horizontal and vertical flips, rotation (up to 45°), and scaling 
were used to artificially increase the size of the minority classes 
(normal images and viral pneumonia images). The images were 
then scaled down and normalised to meet the specific input 
demands of the selected pretrained models. 

F. Model Training and Evaluation 
To build the DL model, one needs to select an appropriate 

algorithm. One identifies network architectures that are relevant 
to the domain space of the target problem, for example, CNNs 
for image-based problems or Long Short-Term Memory 
(LSTM) for text or sequenced data. Training models from 
scratch, however, is expensive, so the use of pretrained models 
can help in this regard [18]. 

The performance of the deep learning models is evaluated 
using the cross-entropy as the loss function and the Adam 
optimiser for optimisation. The models are fine-tuned for 32 
epochs, with weight decay employed to prevent overfitting. 
Five key performance metrics are calculated to assess the 
models’ ability to classify the normal, bacterial pneumonia, and 
viral pneumonia cases: accuracy, sensitivity, precision, 
specificity, and F1 score. 

 
Accuracy =  TP+TN

(TP+FN) + (FP+TN)
             (1) 

 
Sensitivity =  TP

(TP+FP)
                (2) 

 
Precision =  TP

(TP+FP)
                 (3) 

 
Specificity =  TN

(FP+TN)
                (4) 

 
F1 Score =  (2∗TP)

(2∗TP + FN + FP)
              (5) 

4. Results 
This section presents the key findings from the experiments 

conducted with different deep learning models on the multiclass 
pneumonia classification task. The models were evaluated 
according to their performance in classifying normal, bacterial 
pneumonia, and viral pneumonia CXR images, as measured 
using the accuracy, precision, recall, specificity, and F1 score. 
The experiments were conducted across three distinct 
groupings, resulting in a total of eight possible combinations. 
The groupings are:  

• Dataset type: base vs augmented data. 
• Model type: feature extractor vs fine-tuned 
• Regularisation: with or without weight decay. 

A. Dataset and Augmentation 
The dataset utilised in this study consists of 5,863 CXR 

images classified into three categories, as illustrated in Figure 
1: normal (1,183 samples), bacterial pneumonia (2,380 
samples), and viral pneumonia (1,093 samples). Augmentation 
techniques were applied to enhance the dataset, expanding each 
class to 5,000 samples to address class imbalance. The new 
images were obtained by applying horizontal and vertical 
flipping, rotation (up to 45°), and scaling to images from the 
original dataset. The data were then split into training (70%), 
validation (15%), and test (15%) sets. Figure 2 shows sample 
CXR images before and after augmentation. This augmented 
dataset improved model generalisation and helped mitigate 
overfitting.  
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B. Model Performance 
Eight pretrained deep learning models – EfficientNet (B0, 

B2), MobileNet (v3 small, v3 large), RegNet (x1.6gf, y1.6gf), 
ConvNeXt Base, and ViT (B_16) – were fine-tuned on the 
augmented dataset with weight decay enabled. Table 1 presents 
the results obtained for each model, showing the accuracy, 
specificity, precision, recall, and F1 score. 
 

 
Fig. 1.  Samples from the base dataset 

 

 
Fig. 2.  Sample images after undergoing transformations 

 
As shown in Table 2, feature-extractor models trained on the 

augmented dataset exhibited poor performance. This can be 
attributed to the limited number of trainable parameters, which 
led to overfitting on the dataset. Feature extractors performed 
optimally when trained on the base dataset. The highest 

performance was achieved by fine-tuning the models on the 
augmented dataset. Additionally, this performance was 
enhanced by incorporating regularisation in the form of weight 
decay, with EfficientNet B0 attaining an accuracy of 82% and 
ConvNeXt Base achieving 83%. 

C. Loss and Accuracy Curves 

 
Fig. 3.  Training and validation curves for the ConvNeXt Base model 

 
Figure 3 shows training and validation loss and accuracy 

curves for the ConvNeXt Base model. These indicate that the 
model converged well, with some significant overfitting 
observed in the training and validation steps. Weight decay was 
employed during training to prevent overfitting, and the model 
that performed best on the validation set was selected as the 
final model. 

EfficientNet B0 performed the worst when training a feature 
extractor on the base dataset with weight decay turned on. The 
best performance was achieved when fine-tuning the model on 
the augmented dataset with weight decay turned on. As 
demonstrated in Figure 4, neither configuration suffered from 

Table 1 
Model performance on the validation dataset 

Model Accuracy (%) Specificity (%) Precision (%) Recall (%) F1 Score (%) 
EfficientNet B0 82.0 91.0 80.5 83.0 81.7 
EfficientNet B2 81.8 90.9 80.3 82.8 81.5 
MobileNet v3 small 81.0 90.5 79.8 81.0 80.4 
MobileNet v3 large 80.0 90.0 79.5 80.0 79.7 
RegNet x1.6gf 79.4 89.7 78.6 79.4 79.0 
RegNet y1.6gf 77.6 88.8 77.0 77.6 77.3 
ConvNeXt Base 83.0 91.5 82.0 83.5 82.7 
ViT B_16 80.1 90.1 79.2 80.1 79.6 

 
Table 2 

The performance of EfficientNet B0 across the eight experiments 
Dataset Model Type Regularisation (Weight Decay) Accuracy (%) Specificity (%) 
augmented fine tuned on 82.0 91.0 
augmented fine tuned off 80.8 90.4 
base fine tuned off 77.4 88.7 
base fine tuned on 77.2 88.6 
base feature extractor off 76.8 88.4 
base feature extractor on 76.8 88.4 
augmented feature extractor off 75.6 87.8 
augmented feature extractor on 75.5 87.8 
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significant overfitting. 
 

 
Fig. 4.  Training and validation curves for EfficientNet B0 

D. Comparison with State-of-the-Art Models 
Table 3 

Comparison with State-of-the-Art models 
Reference Architecture Accuracy (%) 
Hammoudi et al. [7] DenseNet169 95.72 

VGG19 82.66 
ResNet + RNN1 78.16 
ResNet + RNN2 79.51 

Dokur et al. [20] CNN 77.72 
CNN x2 + InceptionV3  75.14 

Ukwuoma et al. [21] Transformer encoder 98.19 
This research ConvNeXt Base 83.00 

EfficientNet B0 82.00 
 
The performance of the ConvNeXt Base model was 

compared with state-of-the-art models from related studies. 
Table 3 compares the best-performing model from this study 
with those in previous works. Although the ConvNeXt Base 
model did not achieve the same level of accuracy as some of the 
more complex models used in previous studies, it provides a 
balance between accuracy and computational efficiency. Thus, 
it is more suitable for deployment in low-resource settings with 
limited computational resources.  

E. Summary of Results 
The ConvNeXt Base model attained the highest accuracy 

(83.0%) and specificity (91.5%), proving a promising tool for 
multiclass pneumonia detection. The use of transfer learning, 
data augmentation, and regularisation techniques contributed to 
the improved generalisability and performance of the model, 
particularly in addressing class imbalance and reducing 
overfitting. The results also highlight the challenge of 
distinguishing between bacterial and viral pneumonia, 
suggesting that further model refinement is needed for more 
precise classification. 

 
 
 

5. Discussion 

A. Transfer Learning 
The results of this study demonstrate the effectiveness of 

transfer learning in multiclass pneumonia detection. Fine-
tuning pretrained models made it possible to achieve high 
accuracy scores without needing to train models from scratch, 
which is beneficial in medical domains where large labelled 
datasets are scarce. This approach consistently yielded better 
results than feature extraction alone. For instance, after fine-
tuning, the ConvNeXt Base model achieved the highest 
accuracy (83.0%) and specificity (91.5%), outperforming the 
feature extractor configurations. These findings align with 
previous research that has demonstrated the advantages of fine-
tuning in improving model generalisation, particularly when 
applied to small datasets [22]. 

B. Data Augmentation 
Data augmentation proved crucial in addressing class 

imbalance and reducing overfitting in this study. As seen with 
models like EfficientNet B0, applying augmentation techniques 
such as flipping and rotation improved the performance metrics 
significantly. Without data augmentation, models such as 
MobileNet v3 large experienced overfitting, as evidenced by 
the lower test set accuracy and specificity scores. For 
EfficientNet B0, data augmentation increased its accuracy from 
77.2% to 82.0% and specificity from 88.6% to 91.0%. This 
improvement aligns with the literature, in which data 
augmentation has been shown to enhance the robustness of deep 
learning models in imbalanced datasets [23]. 

C. Regularisation and Weight Decay 
Regularisation techniques, specifically weight decay, were 

also explored in this study. The application of weight decay 
reduced overfitting, particularly in models with higher 
parameter counts. For example, when weight decay was 
applied, the accuracy of EfficientNet B0 improved from 80.8% 
to 82.0% and its specificity from 90.4% to 91.0%. Similarly, 
the ConvNeXt Base model exhibited a marked increase in 
performance with weight decay, demonstrating the importance 
of regularisation in optimising deep learning models for 
medical image classification. These results support the findings 
of previous studies that emphasise the role of weight decay in 
preventing overfitting in neural networks [12]. 

D. Comparison with State-of-the-Art Models 
Although promising, the results achieved in this study did not 

surpass those of some state-of-the-art models, such as 
DenseNet169, which achieved an accuracy of 95.72 %.7 
Nevertheless, regarding accuracy and specificity, the 
ConvNeXt Base model outperformed several other models, 
such as VGG19 and ResNet. Although ConvNeXt Base 
achieved the highest accuracy (83%), EfficientNet B0 was only 
slightly behind (82%) while being more computationally 
efficient. This finding supports the growing body of research 
suggesting that smaller models can be effective in medical 
image classification tasks, particularly in resource-constrained 
environments. 
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E. Limitations 
Although this research achieved promising results, there are 

several limitations to consider. First, the dataset used in this 
study is relatively small compared with other large-scale 
datasets used in medical image analysis. Although data 
augmentation helped mitigate this problem, a more extensive 
and diverse dataset would provide more robust results. 
Additionally, the study focused on pretrained models and did 
not explore models trained from scratch, which could lead to 
different outcomes. Finally, although weight decay enhanced 
the performance of most models, further experimentation with 
other regularisation techniques, such as dropout, could lead to 
greater improvements. 

6. Conclusion 
This study explored the application of deep learning models 

to multiclass pneumonia classification in CXR images. We 
aimed to enhance model performance while addressing class 
imbalance and overfitting by incorporating transfer learning, 
data augmentation, and regularisation techniques such as 
weight decay. The best-performing model, ConvNeXt Base, 
achieved accuracy and specificity scores of 83.0% and 91.5%, 
respectively.  

Data augmentation proved a crucial technique for improving 
model generalisation, particularly in mitigating the effects of 
overfitting. Fine-tuning the pretrained models on the 
augmented dataset led to significant improvements in accuracy 
and specificity. Weight decay greatly assisted in reducing 
overfitting, particularly in models with a higher number of 
trainable parameters. 

This research confirmed the effectiveness of using pretrained 
models for multiclass pneumonia classification. Models like 
EfficientNet B0, despite being smaller, exhibited performance 
close to that of larger models like ConvNeXt Base, which 
suggests that model size does not necessarily correlate with 
performance. Pretrained models provide a cost-effective way to 
achieve high accuracy in medical imaging tasks, making them 
highly suitable for resource-constrained environments. 

Future research could involve more detailed experiments 
tracking learning rate schedules and weight decay 
configurations. These parameters can have a significant impact 
on model performance, and studying their effects over time 
would provide deeper insights into the optimal configuration 
for multiclass pneumonia detection. Additionally, 
incorporating learning rate schedulers may improve training 
efficiency, reducing the time required to reach optimal 
performance. 
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