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Abstract: This paper proposes a full order terminal sliding mode 

(FOTSM) control scheme for the speed loop in the permanent 
magnet synchronous motor (PMSM) servo system. Firstly, to 
overcome the chattering problem of the sliding mode control, the 
full order sliding mode control scheme is proposed for speed 
control of PMSM system. Then, novel adaptive FOTSM control 
scheme is designed based on the RBF neural network. The radial 
based function (RBF) neural network is used to estimate the 
disturbances. The proposed controller requires no prior 
knowledge about the dynamics of the PMSM servo system and no 
off-line learning phase. Lyapunov stability analysis and MATLAB 
simulation results indicate the superiority of the proposed method. 

 
Keywords: Permanent magnet synchronous motor (PMSM), 

Speed control, RBF neural network, Chattering problem. 

1. Introduction 
The permanent magnet synchronous motor (PMSM) is 

widely used in the robotics and motion control systems due to 
its compact structure, low noise, high torque to inertia ratio. 
PMSM is also a typical system which is multivariable, 
nonlinear, with strong coupling and uncertain model 
parameters. The working environment of the PMSM system is 
much rough and the external disturbances will seriously affect 
the control precision. The disturbance torque of the system will 
become extremely complex by the friction between mechanism 
parts. Even an ambient temperature change will also make a big 
variation on the motor parameters such as the resistance of 
motor, the permanent magnet flux and the viscous friction 
coefficient. Because, it is difficult to achieve a high 
performance for PMSM system by using conventional linear 
control methods, such as proportional-integral-differential 
(PID) control method. Traditionally, the PID controller is 
widely adopted to control the PMSM systems in industrial 
applications owing to its simplicity, clear functionality, and 
effectiveness. However, a big problem of the PID controller is 
its sensitivity to the system uncertainties. Hence, many 
advanced nonlinear control methods have been used for PMSM 
system, e.g., adaptive control, nonlinear optimal control, fuzzy 
logic control, neural network control. 

The adaptive control is also an interesting method for the 
PMSM drives because it can deal with the motor parameter and  

 
load torque variations [1], [2]. But, the adaptive control 
algorithm does not guarantee the convergence condition of the 
system dynamic error. The nonlinear predictive control is 
successfully applied on the PMSM drives [3]. Unfortunately, 
this control method requires full knowledge of the motor 
parameters with a sufficient accuracy and the results under 
serious variations of the mechanical parameters are not shown. 
The fuzzy logic control [4] is a preferred research topic due to 
its fuzzy reasoning capacity. However, as the number of the 
fuzzy rules increases, the control accuracy can get better but the 
control algorithm can be complex.  

Meanwhile, the neural network control technique has been 
presented as a substitutive design method to control the speed 
of the PMSM system [5]. The most valuable property of this 
technique is its ability to approximate the linear or nonlinear 
mapping through learning. However, the high computational 
burden increases the complexity in the control algorithm, which 
limits the implementation of this strategy in the practical 
applications. Besides the above mentioned methods, sliding 
mode control (SMC) is one of the most widely and successfully 
applied nonlinear control methods in PMSM system [6-9]. The 
sliding mode control systems has excellent features that they 
are very simple to implement and have sliding mode control 
(SMC) has gained a wide range of applications due to its fast 
global convergence, simplicity of implementation, high 
robustness to external disturbances and parameter variations. 
But sliding mode control must solve the problems of high 
frequency chattering, finite time convergence and singularity. 
Many control schemes have been studied to solve these 
challenges. A number of methods for eliminating chattering 
have been proposed, such as boundary layer method [10], 
disturbance estimation method [11] and dynamic sliding mode 
control [12]. The boundary layer methods use saturation 
function to replace the sign function to eliminate the chattering, 
but the disturbance rejection ability of system is sacrificed to 
some extent. The disturbance observer-based methods reduce 
the chattering by selecting a smaller switching gain. This 
method can reduce the chattering of system, but the control law 
is still discontinuous. Dynamic sliding mode can solve the 
chattering problem more effectively, but it is difficult to meet 
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the requirements of modern control due to its slow 
convergence. In [13]-[15], a terminal sliding mode (TSM) 
control is proposed.  Terminal sliding mode improves the 
convergence character of the system by including nonlinear 
terms in the sliding surface, making the system state converge 
to the desired trajectory in a finite time. However, the terminal 
sliding mode has the singular problem. In order to solve these 
problems, a non-singular terminal sliding mode (NTSM) 
control is presented for a class of nonlinear dynamical systems 
[16], [17]. The NTSM control overcame the singularity 
problem and guaranteed to be finite time. However, this method 
is still the chattering problem. In [18], [19], a full order sliding 
mode control method is presented to solve the above mentioned 
problems. In this method, the control is smooth and no 
chattering phenomenon exists in the system response. 
Nevertheless, the information about the upper bound of 
perturbations is needed in order to achieve asymptotic stability. 

In this paper, a full-order terminal-sliding-mode (FOTSM) 
control scheme with RBF neural network is proposed to solve 
the speed tracking problem for PMSM system. The proposed 
control method is more efficient in eliminating the chattering 
and can handle the unknown disturbance. The finite time 
convergence is also guaranteed. This method utilizes the neural 
network to approximate the load disturbance so that their effect 
can be overcome without requiring prior knowledge of their 
bounds. Simulation results are provided to show the 
effectiveness of the proposed method. The rest of this paper is 
organized as follows. The mathematical model of PMSM is 
described in Section 2. In section 3, FOSTM controller is 
developed for the speed control loop of PMSM system. In 
section 4, an adaptive FOSTM controller is developed based on 
RBF neural network. In section 5, illustrative examples are 
presented to validate the effectiveness of the proposed control 
schemes. Finally, some conclusions are given in Section 6. 

2. Mathematical Model of the PMSM 
In this Paper, a surface-mounted permanent magnet 

synchronous motor is considered. For modeling of PMSM, we 
assume as follows. Assumption 1: Assume that the stator core 
is not saturated, hysteresis and vortex losses are ignored and the 
current of the three phases are symmetric sine wave. Under this 
assumption, the mathematical model of the PMSM in rotor 
reference frame is depicted by Eq. (1). 
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where ω  the rotor speed, di and qi  the d-axis and q-axis 

stator currents, du and qu   the d-axis and q-axis stator voltages, 

SR , dL  and qL the stator resistance, d-axis and q-axis 

inductances, pn the number of pole pairs, vφ the rotor flux, J
the moment of inertia,  B  the viscous friction coefficient, and

2/3 vpt nK φ= . 

Assuming 0=di  based on maximum torque per ampere 
(MTPA) method, the motion dynamic equation of PMSM can 
be rewritten as, 

 
)(tdbiq +−= ωω                 (2) 

 
where JTtdJBaJKb Lt /)(,/,/ −=== can be 

considered as the system disturbances. 
Assumption 2: The disturbance of the PMSM system is 

bounded, i.e., dktd ≤)( , 

where 0>dk  is a constant. 
Note that this assumption is realistic in practical applications. 

For example, when a cutting tool or an end mill of a CNC 
machine tool cuts a work-piece, the load torque may change as 
the cutting thickness changes, but the change rate of the load 
torque is always limited. 

3. FOTSM Controller Design 

The input of PMSM speed control system is qi , rω denote 

the reference speed signal. Substituting tracking error 

re ωω −= and control input qiu =  into Eq. (2), the 

following error equation can be obtained. 
 

)(tdabue r +−+−= ωω              (3) 
 

The full order terminal sliding surface is designed as: 
 

αβ eees )sgn(+=                  (4) 

 
Whereβ  is designed to fulfil the condition that the 

corresponding polynomial α+p  is Hurwitz, ( )1,0∈α . 
Based on Eq. (4), the speed controller is designed as [18]: 

 
)( 21

1 uubu += −                  (5) 
 
αβωω eeau r )sgn(1 −+=              (6) 

 
vTuu =+ 22                    (7) 

 
)sgn()( skkv Td η++−=              (8) 
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Where 0,,0,0,0)0( 22 >≤>>= ηβ TukTu T , sgn( ) 
is the signum function. 

Theorem 1: Consider the dynamic equation (1) of PMSM 
under Assumption 2. If the full order terminal sliding surface is 
chosen as Eq. (4), and the control law is designed as Eq. (5), 
then the speed tracking error ee ,  will converge to zero in finite 
time. Proof: Considered the following Lyapunov function 
candidate: 

 

ssV T

2
1

=                     (9) 

  
According to Eq. (3) and Eq. (5) ~ (8), Eq. (4) can be 

rewritten as follows: 
 

2)()sgn()( utdeetdabus r −=++−+−= αβωω    

                       (10) 
 

Taking the derivative of sliding surface along error system 
yields: 

 

2)( Tuvtds +−=                  (11) 
 

Differentiating V  with respect to time yields: 
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According to Assumption 2 and

0,0,0)( 2 >≤−≤− ssksuskstd Td η , the above 

equation can be rewritten as follows: 
 

0<−≤ sV η                   (13) 

 
The above inequality means that the speed error will arrive 

at the sliding surface 0=s  in finite time and the speed error 
will converge to zero along the sliding surface 0=s . This 
completes the proof.  

Remark 1: The sliding mode variable 𝑠𝑠 in control law (8) is 
not available because the acceleration signal ω  in s  could not 
be measured directly. For calculating the sign of sliding mode 
variable s  in (8), a function g(t) is defined as follows, 

 
εφ += ∗ )()( yWtd T                (14) 

 
)sgn(s can be obtained by the following equation, 

 
))()(sgn()sgn( τ−−= tgtgs            (15) 

whereτ  is a time delay. 

 [ ]τττ /))()((lim)( 0 −−= → tgtgts . 
 

Remark 2: In Theorem 1, the control signal (7) is equivalent 
to a low-pass filter. 

Where )(tv  is the input and )(2 tu is the output of the filter.   
The Laplace transfer function of the filter (7) is: 
 

Tssv
su

+
=

1
)(
)(2                   (16) 

 
Although )(tv  in (8) is non-smooth because of the switch 

function, )(2 tu in (5) is the output of the low-pass filter (7) and 
is softened to be a smooth signal by (7). 

 
In the special case, 0=T , (7) and (8) become 
 

vu =2                      (17) 

)sgn()( skv d η+−=                (18) 
 

If (7) and (8) are replaced with (17) and (18), Theorem 1 
holds also and the control u in (5) is continuous as well. But 
(17) is a pure integrator and more difficult for hardware 
implementation in practical applications than the low-pass filter 
(7). 

Remark 3. We prevent differentiating terms 
αβ ee)sgn(  in 

the TSM manifold (4) from deriving the control laws. So, 
singularity can be avoided, and the ideal TSM, 0=s , is 
nonsingular. 

4. FOSTM Controller Design Based on Neural Network 
In this section, we study the FOTSM control for PMSM 

system when the bounds of the system disturbance’ derivative 
cannot be obtained and a novel adaptive FOTSM control 
scheme is designed based on the RBF neural network. This 
scheme can guarantee the finite time convergence of the error 
without prior knowledge of the bounds of system disturbance’s 
derivative. Since )(td  is unknown, we utilize the RBF neural 
network to approximate it. Assume there is an ideal weight 
matrix ∗W  so that )(td  can be approximated as: 

 
εφ += ∗ )()( yWtd T                (19) 

 
where, [ ],,,, 21 pwwwW =∗ ε denotes the inputs, ε  

denotes the approximation error and satisfies Nεε ≤ , 

[ ]Tp yyyy ),(,),(),()( 21 φφφφ = is the Gaussian function 

given by: 
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Where T
iniiiv ],,,[ 21 µµµ =  denotes the center of the 

receptive field, iσ denotes the width of the Gaussian function.  
The FOTSM based on RBF neural network is designed as 

follows: 
 

)( 21
1 uubu += −                  (21) 

αβωω eeau r )sgn(1 −+=              (22) 

)sgn()()(ˆ
2 skyWu T ηφ ε +−=           (23) 

 
where Ŵ  is the estimate of ∗W  
 

0)0(,0, 2 =>> uk N ηεε  
 
Since ∗W  is constant, the adaptive law is adopted as: 
 

TsyWW )(1ˆˆ φ
λ

−=−=                (24) 

Where 0,ˆˆ >−= ∗ λWWW  
 
Theorem 2: Consider the dynamic equation (1) of PMSM 

under Assumption 2. If the full order terminal sliding surface is 
chosen as (4), and the control law is designed as Eq. (21) to Eq. 
(23) and the adaptive law is adopted as Eq. (24), then the speed 
tracking error 𝑒𝑒, 𝑒̇𝑒 will converge to zero in finite time. 

Proof: Considered the following Lyapunov function 
candidate: 

 

ssV T

2
1

=                     (25) 

 
Differentiating V  with respect to time yields: 
 

ssV  =                      (26) 
 

Substituting Eq. (19) and Eq. (21) ~ (24) into Eq. (10) yields: 
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From Eq. (25), (26), (27), we can obtain as follows: 
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                       (28) 
Since, 0, >> ηεε Nk it can be obtained that: 
 

sV η−≤                     (29) 

 

Therefore, s and W~  are bounded according to the Lyapunov 
stability theorem. The boundedness of ee ,  can then be ensured 
from Eq. (4). Thus, all the signals of the closed-loop system are 
bounded. However, inequality (29) is not sufficient to guarantee 
the finite-time convergence of the system states to zero. We will 
address this problem in the following part [17]. Since the 
Gaussian function ,1)(0 << yiφ pi ,.2,1 = , it follows: 

 

py ≤)(φ  

 
From the property of Frobenius norm, the following 

inequality holds [19]. 
 

)(~)(~ yWyW
F

T

F

T φφ ⋅≤             (30) 

 

According to Eq. (30), we can obtain that 
F

T yW )(~ φ is 

bounded. 

Since
F

T
F yWk )(~ φ≥ , it can be obtained that: 

 
0<−≤ sV η                   (31) 

 
Therefore, V will converge to zero in finite time and the full 

order TSM 0=s  will be established identically. According to 
Theorem 2, ee , will converge to zero in finite time. The proof 
is completed. 

5. Simulation Results 
To validate the effectiveness of the proposed control 

schemes, simulations have been performed on a PMSM servo 
system. The proposed control methods, FOTSM and FOTSM 
based on RBFNN are applied to the PMSM servo system 
respectively. The parameters of a PMSM used in the simulation 
and experiment are given as: rated power WP 750= , rated 
voltage ,220VU =  number of poles 4=pn , armature resistance

Ω= 74.1SR , stator inductances, HLL qd 004.0== , viscous 

damping, radmsNB /10403.7 5 ⋅×= − , moment of inertia
241074.1 mkgJ ⋅×= − , rate speed rpmn 3000= , torque 
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constant AmNKT /58.1 ⋅= and rated torque. mNTL ⋅= 4.2  
The parameters of FOTSM controller are 3/5,4 == γβ . 
The parameters of FOTSM controller based on RBF neural 

network are 5/7,4 == γβ , 5,3 == pσ . The centre of the 
receptive field is given by: 

 

21012
21012
21012

−−
−−
−−

=v  

 
The step responses of PMSM speed control system are shown 

in Figure 1. 
 

 
(a) 

 
(b) 

Fig. 1.  Response of the PMSM speed control system 
(a) speed, (b) q-axis current 

 
(a) 

 
(b) 

Fig. 2.  Response of the PMSM speed control system with load disturbance  
(a) speed, (b) q-axis current 

6. Discussion 
From this result, we can see that the control scheme 

guarantees the finite time convergence of tracking errors to 
zero. Also unlike conventional TSM the proposed scheme 
overcame singularity and chattering problems. Figure 2 shows 
that when a load torque mNTL ⋅= 5.4  is applied at t = 0.1s, the 
speed response under our method recovers faster from the load 
torque disturbance. From this figure, we can see that the 
disturbances can be eliminated in the proposed two control 
methods. However, the FOTSM control based on RBF neural 
network doesn’t require the load disturbances’ bound, which 
verifies the advantage of this scheme.   

7. Conclusions 
In this paper, the design and implementation of a FOTSM 

speed controller based on neural network for the PMSM system 
has been investigated. Firstly, in order to eliminate the 
chattering phenomenon in conventional SMC, a continuous 
FOTSM technique has been introduced. Then, a FOTSM speed 
controller based on RBF neural network has been designed. In 
the presence of the external disturbance, the proposed scheme 
can ensure the finite time convergence of the tracking error to 
zero and avoid chattering problem. Meanwhile, the stability of 
PMSM system under the proposed method has been guaranteed 
by means of Lyapunov stability criteria. Finally, the simulation 
and experimental results show that the system under the 
proposed method has a more satisfying performance. 
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