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Abstract: To improve dynamic quality and control performance
of permanent magnet synchronous motor (PMSM) speed control,
the fractional order sliding mode controller (FOSMC-PID) with
PID sliding surface was designed and its parameters were tuned
optimally by adaptive Cuckoo Search (CS) algorithm. The newly
proposed adaptive rules of the Lévy distribution and abandon
probability coefficients in adaptive CS algorithm ensure the
optimal tuning of the controller parameters. The proposed control
system achieves small chattering phenomenon with fast
convergence speed in PMSM speed control. Through MATLAB
simulation, the PMSM speed control performance of integer-order
SMC and fractional-order SMC, and the parameter tuning results
by CS algorithm and PSO algorithm are compared and analyzed.
The simulation results show that the proposed controller design
method not only has good dynamic response but also has strong
robustness to disturbances.

Keywords: Cuckoo Search Algorithm (CSA), Fractional Order
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1. Introduction

Permanent magnet synchronous motors (PMSM) have been
widely applied in industry due to their excellent characteristics
such as high efficiency, high power density and high torque-to-
inertia ratio. However, the practical PMSM system is a typical
nonlinear multivariable coupling system so which is sensitive
to unmodeled dynamics, parameter variations and load
disturbances. To improve the dynamic performance of PMSM
systems, various robust control approaches have been adopted,
such as adaptive control, [1], [2] intelligent control, [3] SMC,
[4]-[6] adaptive disturbance rejection control (ADRC), [7] etc.
SMC has been widely applied to PMSM control due to plant
parameter  variations,  disturbances,  simplicity = of
implementation, and strong robustness.

SMC is a branch of variable structure systems (VSS). The
basic idea of sliding mode control is to control a complex
higher-order system by referring to a single state variable, i.e.,
a sliding function. The most important feature of sliding mode
control (SMC) is its fast convergence and simplicity in practical
applications. Also, it has been widely used for nonlinear system
control due to its high robustness to external disturbances,
modeling errors and insensitivity to changes in plant
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parameters. SMC has been applied in many fields such as
PMSM, [4], [5], [8] induction motor, [9] brushless DC motor,
[10] power conversion system, [11] etc., and has also been
studied. The theoretical study of SMC mainly focused on
overcoming two critical drawbacks. That is, the oscillations of
the control action and the unknown behavior in the reaching
state. The oscillation phenomenon of the control action is
usually reduced by approximating the signal function to a
saturation function. The unknown behavior in the reaching
process ensures the robustness of the system by introducing a
dynamic sliding surface. Wu and Yu [12] designed terminal
SMC to achieve fast convergence and high accuracy in sliding
state. Xinghuo, [13] Mu [14] and Lu [15] introduced NTSMC,
NFTSMC, which can solve the singularity problem with initial
conditions. Also, Huang [16] and Bigdeli [17] have achieved
better control performance by designing fractional SMC for
complex nonlinear systems and chaotic systems represented in
fractional form. Theoretically, fractional order sliding surfaces
undergo slower energy transfer during switching, and thus
produce smaller chattering compared to integer order sliding
surfaces that decrease exponentially to zero. Zaihidee, [18]
Huang [19] and Abdelhamid [20] have experimentally
demonstrated that fractional-order SMC has better control
performance with smaller chattering and robustness against
external load disturbance and parameter variations compared to
integer-order SMC.

Recently, a combination of SMC and artificial intelligence
has been achieved to achieve better control performance. Using
intelligent optimization algorithms, the structure and
parameters of SMC controllers are tuned online or offline to
maximize the performance of SMC. Mahmoodadi [21] applied
an adaptive genetic algorithm consisting of new crossover and
mutation operators to control sliding, solving the low
convergence rate and local optimization problem. Laware [22]
achieved high performance by tuning SMC parameters using
non-dominated sorting genetic algorithm II (NSGA-II) and
multi-objective particle swarm optimization (MOPSO). The
switching gain of the sliding controller is optimized by PSO
algorithm and its effectiveness in UAV and intelligent vehicle
control is verified [23]-[27]. Terfia et al. [28] tuned three
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sliding switching gains using a grey wolf optimization
algorithm, and Lindokuhle et al. [29] compared the
performance of four SMC parameters tuning by the ant colony
optimization algorithm to GA.

Anuja [30] has shown good results by comparing and
evaluating the performance of heuristic optimization
algorithms, PSO, GA and ACO, in the application field of the
Cuckoo Search Algorithm (COA) and the optimal search. The
cuckoo search algorithm, developed by Xin-She Yang and
Suash Deb in 2009, has many applications in optimization
problems due to its excellent global optimization performance
[30]. This algorithm is a natural-based heuristic algorithm that
mimics Lévy flight random walk and the special breeding and
oviposition mechanism of some cuckoos. Adult cuckoo lays
eggs in the nests of other birds, which are found in host birds
and are not removed, and then it grows and matures. Due to the
migratory and environmental characteristics of these cuckoo
populations, during the breeding process, the population
reaches a solution (nest) where the objective function is optimal
[30]. Cuong-Le et al. [32] applied the CS algorithm to various
nonlinear multi-objective optimization problems and showed
good solution results. Zamani et al. [31] showed good
disturbance rejection performance and robustness by tuning the
parameters of fractional-order PID controller with the cuckoo
search algorithm.

In this paper, we propose a new adaptive formulation of

variable step coefficient # and abandon probability p,, and

optimally tune the controller parameters of FOSMC for PMSM
speed control, to verify its effectiveness through simulation.
The rest of the paper is organized as follows. In Section 2, the
fractional calculus and approximation implementation for
fractional order operations are introduced. In Section 3, based
on the mathematical modeling of PMSM, a fractional order
sliding controller with PID sliding surface is designed and
analyzed for stability. Section 4 describes the newly proposed
adaptive cuckoo search algorithm. In Section 5, we compare
integer-order SMC and fractional-order SMC through MATLB
simulation, and compare and discuss the tuning results by CS
and PSO algorithms. Section 6 concludes the work and
discusses future research directions.

2. Fractional Calculus and Approximation

The fractional order operation generalizes the integrand of
integer order to the non-integer calculus. The basic operator

oD is defined as follows.

da

a>0
. . dt”
D=, D=1 1, a=0 (1)
t
I(dr)*“, a <0
a

where ¢ and ¢ denote the upper and lower intervals and
a €R denotes the degree.

We use the Riemann-Liouville (RL) definition which
introduces the gamma functionI'(") .
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The Laplace transform of fractional differential based on the
RL definition is as follows:

0 n—1
[, oDf fwedr=s“Lis o)} 2D Ol O

where L{:} means Laplace operator.

The fractional order operation is implemented using the
Oustaloup approximation.

1+[SJ
s~ K ﬁ _\Pen)

s
= N
n=—N 1
p.n

where 2N +1 means the number of zeros and K means the
gain that makes the above equation have a unity gain at 1 rad /s

a>0 @)

w, o, is defined as follows;

zn>%Wpon
(n+N+(1-a)/2)[(2N+1)
@,
a)z,n = a)b [_J (5)
w,
(N +(1+a)/2) (2N +1)
0, =, 2 6
pn b ( )
w,

where w,,w, is the upper and lower bounds of the

approximation interval and satisfies w,@;, =1L,k = @j, .

3. Fractional-Order Sliding Mode Controller (FOSMC)
Design for PMSM Speed Control

A. Mathematical Model of PMSM

The PMSM consists of a stator and a rotor, which is made of
a permanent magnet, and the stator has a sinusoidally separated
three-phase winding.

To obtain the model of PMSM, the following assumptions
are made for the plant [5]. There is no damp winding in the
rotor, neglecting eddy current, hysteresis losses, magnetic
saturation, and assuming that the induced EMF is sinusoidal.

Under the above assumptions, the mathematical model of
PMSM is as follows [7].

Uy = Rsid + j’d - weﬂ,q (7)
u, =Ri, + i, + 0, (8)
Te =Pn ll//flq + (Ld - Lq)idqu (9)

(10)

a)(f :pna)r
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where u,,u, are the d, g-axis stator voltages, respectively;
ig,i, are the d, g-axis stator currents, respectively; Ld,Lq are
the d, q-axis stator inductances, respectively; 7, is the electric
torque; p, is the pole pair; @,is the electrical angular velocity
and @, is the rotor speed. y ,is the flux linkage of the

permanent magnet.

For surface PMSM, we havel;=0L_;

q b
electromagnetic torque equation is rewritten as follows:

thus, the

T, = p,y siy = ki, 11
where £, is defined as follows:

ki=p.y s (12)
The mechanical dynamic equation is as follows:
T,=Jo,+B,0,.+T, +d(t) (13)
@, = %(k,iq B, T, —d(t)) (14)

where J is the motor moment inertia constant, B,,is the
viscous friction coefficient, 7; is the external load torque and
|d ()| < D is the bounded disturbance.

In this paper, the main control objective is to asymptotically
track the motor speed w, to the desired speed a): . To achieve

the control object, a sliding mode controller is designed that
provides the set-point value of the stator g-axis current
controller in the speed control loop. Then, for decoupling

control, the i; is set to 0.

The speed tracking error e(¢) and its derivative are defined

as follows:
e(t) = o, (1)~ o, (1) (15)
£ = 6.0 =, (0) = .0~ ki, ~ B, -1, (16)

B. Fractional Order Sliding Mode Controller (FOSMC)
Design

First, the fractional-order PID ( PI*D? ) sliding surface is
designed as follows:

S(t) = ke(t) + kD~ e(t) + kD e()

kp,kl-,kd >00<a<l,0<f<1

(17

where D™%(-) is « th-order fractional integral; D?(-)is S

th-order fractional differential.
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S(t) =k ,e(t)+ kD'~ e(t) + ky,DPe(t) (18)
Substituting Eq. (16) into Eq. (18), we have
S =k (1)~ 2 (i, - Byo, T, —d(0)

()_ pwr()_7 tlg =P @ — 1 — () (19)

+ kD" %e(t) + k,DPe(r)

Above Eq. (19), disturbance term setd(¢) =0, forcing
S (1) =0 and then the equivalent control u,, can be obtained
as

.eq

eq q kpkt

+k,D'"%e(t) + deﬂ“e(z))

k a')*(t)+k—p(B w, +T; )+
pr J m=r (20)

To reduce the chattering problem, the sign function is
substituted by the following function:

S(@)
IS()|+¢

where ¢ is sufficiently small positive constant.

sat(S(1)) = 21

Fig. 1. sat(S(t)) function curve with &

As shown in Fig. 1, with increasing ¢, the saturation function
near zero becomes smooth and the effect of vibration is
reduced. However, if ¢ is too large, the amplitude will increase
and the sliding motion time will be longer, so that ¢ should be
chosen properly.

Based on the design of fractional order sliding controller, the
PMSM speed control system is constructed as shown in Fig. 2.
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Fig. 2. PMSM speed control system diagram with FOSMC

) =1, +kgsat(S(1)) =

u:lq

J . k _

= \k,o ()+-L2(B,0, +T,)+kD" et 22
kpkt(p r() J(mr L) i () ( )

+ deﬁ+1e(t))+ kg %

As can be seen in Fig. 2, the output of fractional order sliding
controller is the set point of PI controller of g-axis current
regulation loop.

C. Stability Analysis
The Lyapunov function is defined as follows:
I 2
V==5(t) (23)
2
According to the Lyapunov stability theorem, the sliding

surface reaching condition is S (t)S (1)<0.

Using the result obtained by substituting Eq. (19) into Eq.
(22) for the derivation of the above expression, we have,

, : k
V=500 =—5 (f)[ d;?) s |S(f>(|2 gj

(24)
To become S (t)S (1) <0 , k,must satisfy bellow equation;

A0 SO+e

ra—T (25)
S@)
1) When S(t)<0 then |S(t)| e <0,
() S(t) :
( K kg |S(t)| N EJ >0=S5®)S®)<0 (26)
2) When €< S8(t)
k=2 d(t) S d(t) St)+¢ N
ke ko SQ@
k, :2d(t) >d(t) S(t)+g:> 27
k, k., S
3) For the properly large positive number M, when
0<S@)<e
K, :Md(t) >af(t) St +¢ (28)
k, k, S

S(t) +¢

1. whenS(t)<eg, ie, if <M, thenS‘(z)<0,

and Eq. (27) holds and the system is stable.
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St)+¢
S(1)
S (t) >> 0, and the system is unstable. On the other
hand, S(¢) is stable by moving to the 1 state at a very

2. when0<S()<<e, ie., if >M , then

fast rate.
3. After several oscillations and controls, passing
between stages 1 and 2, the sliding surface S(¢) is

finally maintained at S(¢) = /(M —1), then becomes

S (#) =0, and the system reaches a steady state.
Through the above analysis, if we choose M,s properly
such that Eq. (28) is satisfied, and obtain the switching gaink,,

the system will converge to zero in a finite time.

4. Optimal Tuning of Fractional Order Sliding Mode
Controller using Adaptive CS algorithm

A. Lévy Flight

In general, animals are found to feed in a random or quasi-
random manner.

The foraging path of animals is a random walk, because the
next move is based on the transition probability to the next
position or state in the current position or state. The transition
probabilities are clearly modeled mathematically and previous
studies have shown that the flight behavior of many animals and
insects is typical of Lévy flight.

The basic equation of Lévy flight is as follows [32].

o(f)xu

Loy (D=5

(29)

where u and V are drawn from normal distributions, i.e.
u~N(Q, 0'3 ), V ~N(O, O'vz), and the parameter 1< <2 is
considered to control the range of the step lengths.

Whereo, , o, are expressed as follows:
1

B
r{d+p)x sin(ﬁ)

o, = S5t 0=l (30)

o], e

2

Here Gamma function is denoted integral as follows:
I(z) = j e dr 31)

0

The Lévy flight represents a random trajectory, and its step
length is obtained according to the Lévy distribution as follows:

Lévy ~u=t7,(1<f<2) (32)

This means infinite variance with infinite mean.
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B. Cuckoo Search Algorithm (CSA)
1) Cuckoo Search Rule

Generally, the cuckoo search is done with the following
rules.

First, cuckoos lay one egg at a time and lay their eggs in the
nest of a randomly selected host bird. Next, the best nest with
good quality eggs is inherited in the next generation. Also,
among nests, a probability p, €[0,1] is found by the host bird,

which either abandons the eggs or the nests and builds a new
nest. That is, among 7 solutions, we replace the new solution
by the p, part.

2) Adaptive CS Algorithm

The cuckoo search algorithm can be divided into three main
steps.

The first stage generates the initial solution, the second stage
updates the solution with a Lévy random walk, and the third
stage updates the new solution with a certain probability
P, €[0,]] of updating solutions.

The second and third steps above are repeated until they meet
the specified number of iterations or search stopping condition.

In this study, the size of B adjusting the size of the Lévy
random walk is adaptively varied as Eq. (34) to find the optimal
one.

The larger the value between 1 and 2, the higher the
probability that the length of the random walk will be reduced.

Therefore, the larger the number of iterations, the higher the
probability of reaching the optimum point, the smaller the step
size, and the search for the optimal solution is necessary. Also,
the probability P, e[0]1] affecting global optimization
performance is varied as Eq. (36), which reduces the
computational load without affecting global optimization
performance.

Step I: Generate N candidates initial solutions, set the
number of maximum iterations T},

For i=1:N

1. Chose the initial solution of X;(i=12,..,N),N:
Number of host nest
2. Evaluate the objective function: f(X;)

End

Repeat Step 2 and Step 3 until <7,

Step 2: Find and update nest

3. fori=I:N

X' =X +a® LayP) (33)

where « € rand(0,1) is chosen randomly each iterations

[)’:1+sin(2m J 1<B<2 (34)

max

Limit X in the boundaries condition X ;, < X! <X ..

4. Evaluate the fitness function of new solution f,,-(X;)
S0 M Loy (XD < foy (X7

update the new nest X; = X/
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End if
End for
6. Rank the best fitness function and find the best
solution

fbtest = min({fobj(Xlt)a"-afoly'(Xj\’)})

Step 3: Host bird’s decision-making process based on
abandon fraction P, €[0,1] with adaptive rule

7. Adaptive rule of abandon fraction P,

t
Vi =Y X—fhfflt (35)
best
Where y, =0.3
P, =02+, x-mu"! (36)
8. Calculate the number of dumping nests: P,
Presi =[Py xN]+1 (37)

9. Random selection of the dumping nest except for the
best solution.

n=randsample([2: N],P,,,)
10. For j=1:Pnest
11. Randomly choose Temp) in the solution intervals

(38)

(X
12. Evaluate the
fobj (Tempj)

13. Af f (Tempt) < £, (X1 5)

X,y =Temp's, £, (X)) = fop; (Temp')
End if
End for
14. Rank the best fitness function and find the best
solution
15. t=t+1

t
min STe”npj SA/max)

fitness function of new solution

5. Simulations and Results

The designed controller is simulated in MATLAB/Simulink
environment and the speed control system is evaluated.

The model used in the simulation is a 3-phase PMSM of 1.93
kW and the parameters are shown in Table 1.

Table 1
Parameters of PMSM
Parameter Value
Stator resistance, R 1.2Q
6.35mH

d-axis stator inductance, Ly

Moment of inertia, J 231x1074 ke i

Viscous friction coefficient, B, ~ 0.0002Nms
Flux linkage, v s 0.15Wb
Pole pair, p, 4

2.5N

Load Torque, 77,

The control system designed in Simulink environment is
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Fig. 3. Simulink diagram for PMSM speed control with fractional order sliding controller

constructed as shown in Figure 3.

In the simulation, we used the SPMSM model provided by
MATLAB/Simulink. In the simulation, the control volume limit
is given for each set point. We perform the adaptive CS
algorithm operation on m-files and perform the simulation by
setting the obtained solutions to the controller parameters.

The PI controller parameters of the current regulation loop
are simulated by settingk, 4 =05,k 4=200, k, ,=06,

k

P_q
i q =250. Also, the saturation function (Eq. 21) is set to £ =0.5
, M =3, the upper limit of load disturbance is set to 2.4 times
the load torque and is simulated by using k; > 6 .

Then, in the cuckoo search algorithm, set the number of
candidate solutions N =30, the maximum number of steps

Tmax =100, and the controller parameters are searched in the
following intervals,
0<k, <1,0<k; <1, 0<k; <1, 0<alpha<1, 0<beta<l,

2<k, <15

To minimize the steady-state error, the fitness function is
defined as follows;
J=ITAE + M +1,(98%) +100E

The speed response and load disturbance response of the
designed controller are compared and analyzed by simulation.

For comparison, the results obtained by optimally tuning the
parameters of SMC and FOSMC with the CS algorithm are
shown in Fig. 4.

500
400 _ -
% 300 & A
3 200
< 100
0
0 01 02 03 04 05 06 07 08 09 1
Time(s)
Fig. 4. Comparison tracking performance between FOSMC and Integer order
SMC

As shown in Fig. 4, FOSMC has a 0.3% less overshoot, 30%
less chattering amplitude and significantly faster convergence

rate than integer-order SMC.

Figure 5 shows the load disturbance rejection characteristics
of FOSMC.

500 \E[J B

400
300
200
100

Speed(rpm)

0 01 02 03 04 05
Time(s)

Fig. 5. Comparison disturbance suppression performance between FOSMC
and Integer order SMC (6N step disturbance at 0.5s)

06 07 08 09 1

Initially, the disturbance rejection capability of 2.5 N load
and 6 N load at 0.5 s was shown by comparison with integer-
order SMC. As shown in the figure, the designed control system
is stable and effectively suppressed even in external
disturbances.

Next, the search performance of the proposed adaptive CS
algorithm is compared with that of PSO algorithm.

500
a00[ // s =
300/
200 //

Speed(rpm)

0 01 02 03 04 05
Time(s)
Fig. 6. Comparison speed response between Adaptive CS-FOSMC and PSO-
FOSMC algorithm

06 07 08 09 1

The tracking and disturbance rejection performance between
the FOSMC tuned with the adaptive CS algorithm and the PSO
algorithm and the tuned FOSMC are shown in Fig. 6 and Fig.
7.
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Table 2
Detailed control performance

Algorithm ky k; kg a B

kg ITAE M%) 1[s] E,

Adaptive CS  0.424 0.6364 0.6887 0.0167
PSO 0.5553  0.7883  0.9419  0.0985

0.0165
0.0905

10.2298  0.0279  0.06 0.1 0.0221  2.3979
13.2283 1.033 0.1 0.1 0.112 12.433

500 s |_r1
400( =

300

200
100

Speed(rpm)

0 01 02 03 04 05

Time(s)

Fig. 7. Comparison disturbance suppression performance between CS
FOSMC and PSO-FOSMC (6N step disturbance at 0.5s)

06 07 08 09 1

As shown in Fig. 6 and Fig.7, we can see that the search
performance of the proposed adaptive CS algorithm is
excellent.

It can be seen that the fitness function is optimized together
with the control performance indices such as ITAE, steady-state
error and overshoot.

The detailed control performance indices are shown in the
table 2.

Figure 8 compares the search performance between the CS
algorithm with adaptively varying discard probability and the
CS algorithm with fixed discard probability.

Acwine =5
ce

Iterations

Fig. 8. Comparison performance between Adaptive CS and original CS

As shown in the figure, it can be seen that the adaptive CS
algorithm can obtain a good solution with less iteration.

6. Conclusion

A systematic design method of fractional order sliding
controller (FOSMC-PID) with fractional order PID sliding
surface for PMSM speed control and an improved adaptive CS
algorithm for optimal tuning of controller parameters are
introduced.

By adjusting the controller parameters by taking the rise
time, transient time, steady-state error, overshoot and ITAE
parameters as objective functions, the excellent control
performance and robust performance of the proposed controller
are clearly shown. In addition, we have newly proposed a rule
to adaptively change the Levy random walk length and abandon
probability so as to increase the global search capability and

search speed while reducing the computational effort.

The advantages of the proposed controller and algorithm are
demonstrated through simulation. Although there is a lack of
model uncertainties in the modeling process, the simulation
shows good control performance under large load disturbances,
which can suppress the model uncertainties from the strong
robustness of the sliding controller.

In the future, we will study the application of the adaptive CS
algorithm to multi-objective optimization of control systems in
combination with fractional order control, neural network
control, etc.
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