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Abstract: To improve dynamic quality and control performance 

of permanent magnet synchronous motor (PMSM) speed control, 
the fractional order sliding mode controller (FOSMC-PID) with 
PID sliding surface was designed and its parameters were tuned 
optimally by adaptive Cuckoo Search (CS) algorithm. The newly 
proposed adaptive rules of the Lévy distribution and abandon 
probability coefficients in adaptive CS algorithm ensure the 
optimal tuning of the controller parameters. The proposed control 
system achieves small chattering phenomenon with fast 
convergence speed in PMSM speed control. Through MATLAB 
simulation, the PMSM speed control performance of integer-order 
SMC and fractional-order SMC, and the parameter tuning results 
by CS algorithm and PSO algorithm are compared and analyzed. 
The simulation results show that the proposed controller design 
method not only has good dynamic response but also has strong 
robustness to disturbances. 

 
Keywords: Cuckoo Search Algorithm (CSA), Fractional Order 

Sliding Mode Controller (FOSMC), Optimal Tuning, PMSM 
Speed Control.  

1. Introduction 
Permanent magnet synchronous motors (PMSM) have been 

widely applied in industry due to their excellent characteristics 
such as high efficiency, high power density and high torque-to-
inertia ratio. However, the practical PMSM system is a typical 
nonlinear multivariable coupling system so which is sensitive 
to unmodeled dynamics, parameter variations and load 
disturbances. To improve the dynamic performance of PMSM 
systems, various robust control approaches have been adopted, 
such as adaptive control, [1], [2] intelligent control, [3] SMC, 
[4]-[6] adaptive disturbance rejection control (ADRC), [7] etc. 
SMC has been widely applied to PMSM control due to plant 
parameter variations, disturbances, simplicity of 
implementation, and strong robustness. 

SMC is a branch of variable structure systems (VSS). The 
basic idea of sliding mode control is to control a complex 
higher-order system by referring to a single state variable, i.e., 
a sliding function. The most important feature of sliding mode 
control (SMC) is its fast convergence and simplicity in practical 
applications. Also, it has been widely used for nonlinear system 
control due to its high robustness to external disturbances, 
modeling errors and insensitivity to changes in plant  

 
parameters. SMC has been applied in many fields such as 
PMSM, [4], [5], [8] induction motor, [9] brushless DC motor, 
[10] power conversion system, [11] etc., and has also been 
studied. The theoretical study of SMC mainly focused on 
overcoming two critical drawbacks. That is, the oscillations of 
the control action and the unknown behavior in the reaching 
state. The oscillation phenomenon of the control action is 
usually reduced by approximating the signal function to a 
saturation function. The unknown behavior in the reaching 
process ensures the robustness of the system by introducing a 
dynamic sliding surface. Wu and Yu [12] designed terminal 
SMC to achieve fast convergence and high accuracy in sliding 
state. Xinghuo, [13] Mu [14] and Lu [15] introduced NTSMC, 
NFTSMC, which can solve the singularity problem with initial 
conditions. Also, Huang [16] and Bigdeli [17] have achieved 
better control performance by designing fractional SMC for 
complex nonlinear systems and chaotic systems represented in 
fractional form. Theoretically, fractional order sliding surfaces 
undergo slower energy transfer during switching, and thus 
produce smaller chattering compared to integer order sliding 
surfaces that decrease exponentially to zero. Zaihidee, [18] 
Huang [19] and Abdelhamid [20] have experimentally 
demonstrated that fractional-order SMC has better control 
performance with smaller chattering and robustness against 
external load disturbance and parameter variations compared to 
integer-order SMC. 

Recently, a combination of SMC and artificial intelligence 
has been achieved to achieve better control performance. Using 
intelligent optimization algorithms, the structure and 
parameters of SMC controllers are tuned online or offline to 
maximize the performance of SMC. Mahmoodadi [21] applied 
an adaptive genetic algorithm consisting of new crossover and 
mutation operators to control sliding, solving the low 
convergence rate and local optimization problem. Laware [22] 
achieved high performance by tuning SMC parameters using 
non-dominated sorting genetic algorithm II (NSGA-II) and 
multi-objective particle swarm optimization (MOPSO). The 
switching gain of the sliding controller is optimized by PSO 
algorithm and its effectiveness in UAV and intelligent vehicle 
control is verified [23]-[27].  Terfia et al. [28] tuned three 

Optimal Tuning of Fractional Order Sliding 
Mode Controller with Adaptive CS Algorithm 

for PMSM Speed Control 
Kum Song Choe1, Tong Chol Kim2* 

1,2Faculty of Automation Engineering, Kim Chaek University of Technology, Pyongyang, Democratic People’s Republic of Korea 



Choe et al.    International Journal of Recent Advances in Multidisciplinary Topics, VOL. 6, NO. 10, OCTOBER 2025 111 

sliding switching gains using a grey wolf optimization 
algorithm, and Lindokuhle et al. [29] compared the 
performance of four SMC parameters tuning by the ant colony 
optimization algorithm to GA.  

Anuja [30] has shown good results by comparing and 
evaluating the performance of heuristic optimization 
algorithms, PSO, GA and ACO, in the application field of the 
Cuckoo Search Algorithm (COA) and the optimal search. The 
cuckoo search algorithm, developed by Xin-She Yang and 
Suash Deb in 2009, has many applications in optimization 
problems due to its excellent global optimization performance 
[30]. This algorithm is a natural-based heuristic algorithm that 
mimics Lévy flight random walk and the special breeding and 
oviposition mechanism of some cuckoos. Adult cuckoo lays 
eggs in the nests of other birds, which are found in host birds 
and are not removed, and then it grows and matures. Due to the 
migratory and environmental characteristics of these cuckoo 
populations, during the breeding process, the population 
reaches a solution (nest) where the objective function is optimal 
[30]. Cuong-Le et al. [32] applied the CS algorithm to various 
nonlinear multi-objective optimization problems and showed 
good solution results. Zamani et al. [31] showed good 
disturbance rejection performance and robustness by tuning the 
parameters of fractional-order PID controller with the cuckoo 
search algorithm.  

In this paper, we propose a new adaptive formulation of 
variable step coefficient β  and abandon probability ap , and 
optimally tune the controller parameters of FOSMC for PMSM 
speed control, to verify its effectiveness through simulation. 
The rest of the paper is organized as follows. In Section 2, the 
fractional calculus and approximation implementation for 
fractional order operations are introduced. In Section 3, based 
on the mathematical modeling of PMSM, a fractional order 
sliding controller with PID sliding surface is designed and 
analyzed for stability. Section 4 describes the newly proposed 
adaptive cuckoo search algorithm. In Section 5, we compare 
integer-order SMC and fractional-order SMC through MATLB 
simulation, and compare and discuss the tuning results by CS 
and PSO algorithms. Section 6 concludes the work and 
discusses future research directions. 

2. Fractional Calculus and Approximation  
The fractional order operation generalizes the integrand of 

integer order to the non-integer calculus. The basic operator 
α
ta D  is defined as follows. 
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where a  and t  denote the upper and lower intervals and 
ℜ∈α  denotes the degree.  

We use the Riemann-Liouville (RL) definition which 
introduces the gamma function )(⋅Γ . 

∫ +−−−Γ
=

t

a nn

n

ta d
t

f
dt
d

n
tfD τ

τ
τ

α α
α

1)(
)(

)(
1)(          (2) 

nn <≤− α1  
 
The Laplace transform of fractional differential based on the 

RL definition is as follows: 
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where }{⋅L  means Laplace operator. 
The fractional order operation is implemented using the 

Oustaloup approximation. 
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where 12 +N  means the number of zeros and K  means the 
gain that makes the above equation have a unity gain at 1 srad /
. 
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where hb ωω ,  is the upper and lower bounds of the 

approximation interval and satisfies αωωω hhb k == ,1 . 

3. Fractional-Order Sliding Mode Controller (FOSMC) 
Design for PMSM Speed Control 

A. Mathematical Model of PMSM 
The PMSM consists of a stator and a rotor, which is made of 

a permanent magnet, and the stator has a sinusoidally separated 
three-phase winding. 

To obtain the model of PMSM, the following assumptions 
are made for the plant [5]. There is no damp winding in the 
rotor, neglecting eddy current, hysteresis losses, magnetic 
saturation, and assuming that the induced EMF is sinusoidal. 

Under the above assumptions, the mathematical model of 
PMSM is as follows [7].  

qeddsd iRu λωλ −+=                     (7) 

deqqsq iRu λωλ ++=                         (8) 

[ ]qdqdqfne iiLLipT )( −+= ψ                 (9) 

rne p ωω =                      (10) 
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where qd uu , are the d, q-axis stator voltages, respectively; 

qd ii , are the d, q-axis stator currents, respectively; qd LL , are 

the d, q-axis stator inductances, respectively; eT is the electric 
torque; np is the pole pair; eω is the electrical angular velocity 
and rω  is the rotor speed. fψ is the flux linkage of the 

permanent magnet. 
For surface PMSM, we have qd LL = ; thus, the 

electromagnetic torque equation is rewritten as follows: 
 

qtqfne ikipT == ψ                   (11) 

 
where tk is defined as follows: 
 

fnt pk ψ=                      (12) 
 

The mechanical dynamic equation is as follows: 
 

)(tdTBJT Lrmre +++= ωω               (13) 

( ))(1 tdTBik
J Lrmqtr −−−= ωω              (14) 

 
where J  is the motor moment inertia constant, mB is the 

viscous friction coefficient, LT is the external load torque and 
Dtd ≤)(  is the bounded disturbance. 

In this paper, the main control objective is to asymptotically 
track the motor speed rω  to the desired speed *

rω . To achieve 
the control object, a sliding mode controller is designed that 
provides the set-point value of the stator q-axis current 
controller in the speed control loop. Then, for decoupling 
control, the di  is set to 0. 

The speed tracking error )(te  and its derivative are defined 
as follows: 
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B. Fractional Order Sliding Mode Controller (FOSMC) 
Design 

First, the fractional-order PID ( βαDPI ) sliding surface is 
designed as follows: 
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where )(⋅−αD  is α th-order fractional integral; )(⋅βD is β

th-order fractional differential. 
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Substituting Eq. (16) into Eq. (18), we have 
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Above Eq. (19), disturbance term set 0)( =td , forcing 
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To reduce the chattering problem, the sign function is 

substituted by the following function: 
 

ε+
=
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where ε  is sufficiently small positive constant. 
 

 
Fig. 1.  ))(( tSsat function curve with ε  

 
As shown in Fig. 1, with increasing ε , the saturation function 

near zero becomes smooth and the effect of vibration is 
reduced. However, if ε  is too large, the amplitude will increase 
and the sliding motion time will be longer, so that ε  should be 
chosen properly. 

Based on the design of fractional order sliding controller, the 
PMSM speed control system is constructed as shown in Fig. 2. 

 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.5

0

0.5

1

epsilon=0.05
epsilon=0.1

epsilon=0.005

epsion=0.001

epsilon=0.01



Choe et al.    International Journal of Recent Advances in Multidisciplinary Topics, VOL. 6, NO. 10, OCTOBER 2025 113 

Fig. 2.  PMSM speed control system diagram with FOSMC 
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As can be seen in Fig. 2, the output of fractional order sliding 

controller is the set point of PI controller of q-axis current 
regulation loop. 

C. Stability Analysis 
The Lyapunov function is defined as follows: 
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2
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According to the Lyapunov stability theorem, the sliding 

surface reaching condition is 0)()( <tStS  . 
Using the result obtained by substituting Eq. (19) into Eq. 

(22) for the derivation of the above expression, we have, 
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To become 0)()( <tStS   , sk must satisfy bellow equation; 
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1. when ε≤)(tS , i.e, if  M
tS
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+
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and Eq. (27) holds and the system is stable. 

2. when ε<<< )(0 tS , i.e., if M
tS

tS
>

+
)(

)( ε , then

0)( >>tS , and the system is unstable. On the other 
hand, )(tS is stable by moving to the 1 state at a very 
fast rate. 

3. After several oscillations and controls, passing 
between stages 1 and 2, the sliding surface )(tS  is 
finally maintained at )1/()( −= MtS ε , then becomes

0)( =tS , and the system reaches a steady state. 
Through the above analysis, if we choose ε,M  properly 

such that Eq. (28) is satisfied, and obtain the switching gain sk , 
the system will converge to zero in a finite time. 

4. Optimal Tuning of Fractional Order Sliding Mode 
Controller using Adaptive CS algorithm 

A. Lévy Flight  
In general, animals are found to feed in a random or quasi-

random manner. 
The foraging path of animals is a random walk, because the 

next move is based on the transition probability to the next 
position or state in the current position or state. The transition 
probabilities are clearly modeled mathematically and previous 
studies have shown that the flight behavior of many animals and 
insects is typical of Lévy flight. 

The basic equation of Lévy flight is as follows [32]. 
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Here Gamma function is denoted integral as follows: 
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The Lévy flight represents a random trajectory, and its step 

length is obtained according to the Lévy distribution as follows: 
 
Lévy )21(,~ ≤<= − ββtu               (32) 

 
This means infinite variance with infinite mean. 
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B. Cuckoo Search Algorithm (CSA) 
1) Cuckoo Search Rule 

Generally, the cuckoo search is done with the following 
rules. 

First, cuckoos lay one egg at a time and lay their eggs in the 
nest of a randomly selected host bird. Next, the best nest with 
good quality eggs is inherited in the next generation. Also, 
among nests, a probability ]1,0[∈ap  is found by the host bird, 
which either abandons the eggs or the nests and builds a new 
nest. That is, among n  solutions, we replace the new solution 
by the ap  part. 
2) Adaptive CS Algorithm 

The cuckoo search algorithm can be divided into three main 
steps. 

The first stage generates the initial solution, the second stage 
updates the solution with a Lévy random walk, and the third 
stage updates the new solution with a certain probability 

]1,0[∈aP  of updating solutions. 
The second and third steps above are repeated until they meet 

the specified number of iterations or search stopping condition. 
In this study, the size of β  adjusting the size of the Lévy 

random walk is adaptively varied as Eq. (34) to find the optimal 
one. 

The larger the value between 1 and 2, the higher the 
probability that the length of the random walk will be reduced. 

Therefore, the larger the number of iterations, the higher the 
probability of reaching the optimum point, the smaller the step 
size, and the search for the optimal solution is necessary. Also, 
the probability ]1,0[∈aP  affecting global optimization 
performance is varied as Eq. (36), which reduces the 
computational load without affecting global optimization 
performance. 

Step 1: Generate N candidates initial solutions, set the 
number of maximum iterations maxT  

For i=1:N   
1. Chose the initial solution of ),...,2,1( NiX i = , N : 

Number of host nest 
2. Evaluate the objective function: )( iXf  

End 
Repeat Step 2 and Step 3 until maxTt <  
Step 2: Find and update nest 

3. for i=1:N 
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update the new nest t
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End if 
End for 

6. Rank the best fitness function and find the best 
solution 
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t
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t
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t
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Step 3: Host bird’s decision-making process based on 
abandon fraction ]1,0[∈aP  with adaptive rule 

7. Adaptive rule of abandon fraction aP  
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t
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  Where 3.01 =γ  
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8. Calculate the number of dumping nests: nestP   
  [ ] 1+×= NPP anest                (37) 

9. Random selection of the dumping nest except for the 
best solution. 

  )],:2([ nestPNrandsamplen =            (38) 
10. For j=1:Pnest 
11. Randomly choose t

jTemp  in the solution intervals 

)( maxmin XTempX t
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12. Evaluate the fitness function of new solution 
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End if 
End for 

14. Rank the best fitness function and find the best 
solution 

15. 1+= tt  

5. Simulations and Results  
The designed controller is simulated in MATLAB/Simulink 

environment and the speed control system is evaluated. 
The model used in the simulation is a 3-phase PMSM of 1.93 

kW and the parameters are shown in Table 1. 
 

Table 1 
Parameters of PMSM 

Parameter Value 
Stator resistance, sR  Ω2.1  

d-axis stator inductance, dL  mH35.6  

Moment of inertia, J  241031.2 mkg ⋅× −  

Viscous friction coefficient, mB  Nms0002.0  

Flux linkage, fψ  Wb15.0  

Pole pair, np  4 

Load Torque, LT  2.5N 

 
The control system designed in Simulink environment is 
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constructed as shown in Figure 3. 
In the simulation, we used the SPMSM model provided by 

MATLAB/Simulink. In the simulation, the control volume limit 
is given for each set point. We perform the adaptive CS 
algorithm operation on m-files and perform the simulation by 
setting the obtained solutions to the controller parameters. 

The PI controller parameters of the current regulation loop 
are simulated by setting 5.0_ =dpk , 200_ =dik , 6.0_ =qpk ,

250_ =qik . Also, the saturation function (Eq. 21) is set to 5.0=ε

, 3=M , the upper limit of load disturbance is set to 2.4 times 
the load torque and is simulated by using 6>sk . 

Then, in the cuckoo search algorithm, set the number of 
candidate solutions 30=N , the maximum number of steps

100max =T , and the controller parameters are searched in the 
following intervals, 

10 ≤< pk , 10 ≤< ik , 10 ≤< dk , 10 ≤< alpha , 10 ≤< beta , 

152 ≤< sk  
To minimize the steady-state error, the fitness function is 

defined as follows; 
sss EtMITAEJ 100%)98( +++=  

The speed response and load disturbance response of the 
designed controller are compared and analyzed by simulation. 

For comparison, the results obtained by optimally tuning the 
parameters of SMC and FOSMC with the CS algorithm are 
shown in Fig. 4. 
 

 
Fig. 4.  Comparison tracking performance between FOSMC and Integer order 

SMC 
 

As shown in Fig. 4, FOSMC has a 0.3% less overshoot, 30% 
less chattering amplitude and significantly faster convergence 

rate than integer-order SMC. 
Figure 5 shows the load disturbance rejection characteristics 

of FOSMC. 
 

 
Fig. 5.  Comparison disturbance suppression performance between FOSMC 

and Integer order SMC (6N step disturbance at 0.5s) 
 

Initially, the disturbance rejection capability of 2.5 N load 
and 6 N load at 0.5 s was shown by comparison with integer-
order SMC. As shown in the figure, the designed control system 
is stable and effectively suppressed even in external 
disturbances. 

Next, the search performance of the proposed adaptive CS 
algorithm is compared with that of PSO algorithm. 
 

 
Fig. 6.  Comparison speed response between Adaptive CS-FOSMC and PSO-

FOSMC algorithm 
 

The tracking and disturbance rejection performance between 
the FOSMC tuned with the adaptive CS algorithm and the PSO 
algorithm and the tuned FOSMC are shown in Fig. 6 and Fig. 
7. 
 

 
Fig. 3.  Simulink diagram for PMSM speed control with fractional order sliding controller 
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Fig. 7.  Comparison disturbance suppression performance between CS 

FOSMC and PSO-FOSMC (6N step disturbance at 0.5s) 
 

As shown in Fig. 6 and Fig.7, we can see that the search 
performance of the proposed adaptive CS algorithm is 
excellent. 

It can be seen that the fitness function is optimized together 
with the control performance indices such as ITAE, steady-state 
error and overshoot. 

The detailed control performance indices are shown in the 
table 2. 

Figure 8 compares the search performance between the CS 
algorithm with adaptively varying discard probability and the 
CS algorithm with fixed discard probability. 
 

 
Fig. 8.  Comparison performance between Adaptive CS and original CS 

 
As shown in the figure, it can be seen that the adaptive CS 

algorithm can obtain a good solution with less iteration. 

6. Conclusion 
A systematic design method of fractional order sliding 

controller (FOSMC-PID) with fractional order PID sliding 
surface for PMSM speed control and an improved adaptive CS 
algorithm for optimal tuning of controller parameters are 
introduced. 

By adjusting the controller parameters by taking the rise 
time, transient time, steady-state error, overshoot and ITAE 
parameters as objective functions, the excellent control 
performance and robust performance of the proposed controller 
are clearly shown. In addition, we have newly proposed a rule 
to adaptively change the Levy random walk length and abandon 
probability so as to increase the global search capability and 

search speed while reducing the computational effort. 
The advantages of the proposed controller and algorithm are 

demonstrated through simulation. Although there is a lack of 
model uncertainties in the modeling process, the simulation 
shows good control performance under large load disturbances, 
which can suppress the model uncertainties from the strong 
robustness of the sliding controller. 

In the future, we will study the application of the adaptive CS 
algorithm to multi-objective optimization of control systems in 
combination with fractional order control, neural network 
control, etc. 
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