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Abstract: Misalignment and rubbing faults between the rotor
and stator of rotor-bearing system are the most common faults of
rotating machines. In this paper, the nonlinear dynamic behavior
of rotor-bearing system with coupled fault of parallel
misalignment, unbalance and rubbing is investigated. The
equations of motion of the rotor system are derived by Lagrange’s
equations, and many techniques such as bifurcation diagram,
Poincare diagram, axial orbit, time domain waveform and
amplitude spectrum diagram are employed to study the dynamic
behavior of rotor system with rubbing, mass unbalance and
parallel misalignment faults. The effect of variation of the parallel
misalignment on various nonlinear phenomena such as periodic,
three-periodic and quasi-periodic motions is investigated. Finally,
some significant results for the safe operation and accurate
identification of faults in rotating machinery are provided.

Keywords: rotor-bearing system, parallel misalignment, impact
rubbing, nonlinear dynamics, bifurcation.

1. Introduction

With the rapid development of science and technology, many
modern machines are being developed in the machine industry.
The faults occurring in the modern machines are difficult to
predict, the cause is very complex and the types of faults are
very diverse. Misalignment, mass balance and rubbing fault of
rotor-bearing system are the most common faults of rotating
machinery. The smaller the clearance between the rotor and
stator, the higher the efficiency of the rotating machine, but the
possibility of impact rubbing fault due to the rotor misalignment
is greatly increased. In the misaligned rotating machine, the
motion of the rotor may cause mechanical vibration,
eccentricity of the coupling, oil whirl and oil whip of bearing,
impact rubbing between rotor and stator, etc., which are very
dangerous for the stable operation of the system [1]. Therefore,
it is very important to study the dynamic characteristics of rotor
misalignment —impact rubbing coupled fault and improve its
operational stability.

In the past, a series of studies on the dynamic behaviour of
rotor-bearing systems with different faults have been carried
out. The effect of misalignment faults and nonlinear oil-film
forces on the system response of an unsymmetrical rotor-
bearing system with parallel misalignment was analysed by Li
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[2]. Li et al. [3] carried out nonlinear dynamic analysis of rotor-
bearing system with misaligned gear couplings. In their study,
various frequency components of transversely misaligned rotor
system and anomalous frequency components in torsional
direction were found. Redmond [4] identified the influence of
various factors such as angular misalignment, coupling stiffness
and static preload caused by misalignment between the two
rotors on the dynamic stability and vibration characteristics of
two rigid rotors connected with misaligned flexible couplings.
Their study has a very important significance in the field of
nonlinear vibration of rotor-bearing systems. Simon [5]
investigated the influence of parameters based on Monte Carlo
simulations in large-scale turbines, where the coupling
misalignment and mass unbalance were considered as
undetermined vibrations.

Several studies have been carried out to discuss the nonlinear
bearing viscous force analysis model and the effect of the oil
film force on the response of the system. Ma et al. [6] studied
the effect of the film instability of sleeve bearings on some
nonlinear vibration mechanisms of a misaligned rotor system.
A nonlinear oil film force analysis model of short journal
bearing was proposed and the effect of oil film forces on the
system response of a nonlinear system was investigated [7]-[9].
Ji [10] studied the complex dynamics of a simple rotor with one
loose end bearing, and Chu [11] investigated the various types
of cyclic motion, quasi-cycles and chaos of a system with
varying rotational speed.

The study of rotor-bearing systems with various hybrid faults
has been further performed, for example, the equations of
motion of Jeffcott rotor with hybrid fault due to bearing
loosening and impact rubbing were established and the effect of
hybrid fault on rotor system stiffness was analysed by
Muszynska [12]. The nonlinear dynamic equations of the
hydro-turbine generator were established and the influence of
some parameters such as generator rotational speed, rotor mass
eccentricity, etc. on the radial vibration characteristics of the
generator shaft system was analysed by Gustavsson [13]. Their
study showed that the system response is mainly a simple
periodic motion, but a quasi-periodic motion may occur in some
parts. Ma et al. [14] proposed a coupled vibration model of the
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generator and building machine foundation, in which the
bearing uncertainty and the interconnection of the plant
building and the generator were taken into account. Wei [15]
studied the nonlinear bearing dynamic characteristics and the
influence of the flexibility of the plant building machine
foundation on the dynamic characteristics of a hydro turbine-
generator by using the finite element method.
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Fig. 1. Rotor-bearing system with coupled fault
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Most of the above studies focus on the simple faults of rotor-
bearing systems. However, the most frequent faults in rotor-
bearing systems are due to mass unbalance or impact rubbing.

In this paper, a nonlinear dynamic model and differential
equations of motion of rotating system with various vibration
faults are proposed based on the theory and method of nonlinear
rotor dynamics. In addition, many techniques such as
bifurcation diagram, Poincare diagram, axial orbit, time domain
waveform and amplitude spectrum diagram are employed to
study the dynamic behavior of rotor system with rubbing, mass
unbalance and parallel misalignment faults.

2. Dynamic Model

A. System Descriptions

Fig. 1 illustrates a rotor-bearing system with coupled fault of
parallel misalignment, unbalance and impact rubbing, in which
two rotors with parallel misalignment ¢ are rigidly connected to
each other. It is assumed that each rotor is mounted in the center
of a flexible shaft supported by a nonlinear oil film bearing and
rotates in its own plane without the gyroscopic effect.

B. Mathematical Model

1) Impact Rubbing Force Model

Fig. 2 illustrates the impact rubbing force model of rotor 1,
in which the elastic impact between rotor and stator is
considered. O3, O, and O,' are the geometric center of bearing,
the geometric center and the center of mass of rotor 1,
respectively; Q is the rotational speed; d; is the clearance
between stator and rotor 1; ; is the mass eccentricity; 71 denotes
the radial displacement of the rotor shaft; ¢ is the initial phase
of mass unbalance.

According to the Coulomb friction law, the friction force is
decomposed in the normal and tangential directions. Then,
when the rotor 1 is impacted by stator, the normal collision
force Py and the tangential rubbing force Pr can be expressed
as
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Fig. 2. Impact rubbing force model of rotor 1

PT:f'PN

(D
PN = (rl _dl)Kr

n2d,

where Kr is the radial stiffness of the stator, and f is the
rubbing coefficient between the rotor and the stator.

The component of the impact rubbing force along x and y
directions as follows.

P —cosQt  sin QX P, ®
=| 2
P, -sinQ¢t  —cosQf | | P
) X
where sin Qr = &, cosQt =2
h i

From Egs. (1) and (2), the impact rubbing forces of rotor 1
along the x and y directions can be written as,

I)lx :_Kr (l_dl/rl)(‘XZ_luyZ)

r>d 3)
PB,=—K, (-d /r)(u-x,+y,) '

Similarly, the impact rubbing forces of rotor 2 along the x
and y directions are,

Fig. 3. Schematic diagram of oil film bearing
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P, =-K, (I
P, =K, (

—d, /) (x5 —pu-ys)
—d, /r) (x5 +y5)

[ 2 2 [ 2 2
where = x," +y," s 1y =4/X5 + Y5 -

2) The model of Nonlinear Oil Film Force

Fig. 3 illustrates a schematic diagram of oil film bearing. In
order to study the dynamic characteristics of rotor bearing
system, the nonlinear oil film force of bearing should be known.
However, the calculation of nonlinear oil film forces is difficult
without some assumptions such as infinitely long bearings or
very short bearings [16].

Assuming a very short sliding bearing for the simplification
of the problem, the Reynolds equation can be written as [17].

r2>d, 4)

3,uL

p0,2) ==~

zz)[(Q - 2(2))% +2écos 0}

)

where 1 =c+ecosf =c(l+&cosf) is the thickness

of oil film; e and ¢ are the equilibrium positions the rotor
centerline; 4 is the circumferential coordinate; u is the visiocity;
R is radius of bearing; L is length of bearing, c is the bearing
clearance; ¢ is the bearing eccentricity.

If the relative pressure at the bearing tip is zero, the oil
pressure can be expressed as,

o h’aop

- (_ ) 6[(9 Z(p) — + 2écos 9} (6)

Note that the boundary condition for the pressure could not
be imposed in the circumferential direction. Therefore, the
analytical method can only be used for journal bearings without
shaft grooves by using Sommerfeld boundary conditions. Then,
the radial and tangential oil film forces as follows.

F, =—Ru— ne,; 1_82)5/2
7 =1,3,4,6 7
e Q—Z(pj) J ™)
by =-Ru— ne, Y
¢ ofi—g )

From Eq. (7), the oil film forces in Cartesian coordinate
system are expressed as,

—F, sing, +F, cosg,

F'r(x"y"x':J.}'):
J J J J J j:l,3,4,6

Ey(x),9,,%,,9,) = F) cos; + F, sing,
(3)
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where cosQ. =
J

Yoo X; _ [.2 2
——, sing, =——, ej— xj+yj’
e e

j j
e, dp; VX, =Xy,
E. =— - 2 B
Y C > dt e .

J

dej _ xj)'cj +yj.)'/j.
dt e, '

J

3) Equations of Motion
The total kinetic energy of the system can be expressed as,

1 .2 .2 .2 .2 .2 .2 .2 )
T=5m[x] FYp XY X YL X+ Y]

+ %Ml[(ic2 —a,2sin(p, + Q) + (, +a,Qcos(p, + Q1)*]

+ %Mz[(xs —a,Qsin(p, +Q1))* + (¥, + a,Qcos(p, + 21))*]

+lJIQ2 +lJzQ2
2 2

©

where M, M, and m means the equivalent masses including
the rotors and the shafts, respectively; a1, a, are the eccentricity
of rotors, respectively; £ is the rotational speed.

When a collision between the stator and the rotor occurs, i.e.

rn2d,, r, 2 d, , the potential energy can be expressed as,

1 1 1
:Ekl(xl _x2)2 +§k|(y1 _y2)2 +Ek1(xz _x3)2

1 , 1 , 1 N
+5k1(y2—y3) +5k2(x4_x5) +Ek2(y4_y5)

1 1
5k (xs -x)’ 5k (s = 26)" +mg(y, +yy +y,+ )

+M,g(y, +a,cos(p, + Q)+ M,g(ys +a, cos(p, +€))

K O —d) K, ()

(10)

Fig. 4 shows the motion relationship between two adjacent

rotors with parallel misalignment, in which ¢ is the angle

between the x-axis and the straight line connecting nodes 3 and
4.

e

Fig. 4. The motion relationship between the adjacent rotors with the parallel
misalignment
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The displacements of two adjacent rotors are coupled
because of the parallel misalignment between them, and thus
the constraints are imposed on the rotor system based on the
analytical dynamics theory.

Thus, the constraint function is defined as,

S (x5, 5, %,5,) = (% _x4)2 + (3 _y4)2 -56%=0
(11)

where 6 means rotor misalignment.
The above constraint is holonomic and can be expressed in
another form by introducing an angle variable as,

X;—x, =0cos¢

) (12)
Y3 —y,=0sing

By substituting the constraint Eq. (12) into Egs. (9) and (10),
the kinetic and potential energies can be written as,

T=%m[)'cf + 2+ (%, —Opsing)? +(, +Opcosg)® +x2 + 32 +i2 + 2]
+%Ml[(5c2 —a,Qsin(p, + Q21)* + (3, +a,Qcos(p, + Q)]

+%M2 [(35 —a,2sin(p, +Q1)° +(ys +a,Qcos(p, + Q)]

+1J]Q2 +1J2Q2
2 2

(13)

1 1 1
UIEkl(xl _xz)z +5k1(y1 _)’z)2 +Ek1(xz _5COS¢_X4)2
1 . 2 1 2 1 2
+Ek|(yz_5sm¢_y4;) +Ekz(x4_x5) +Ek2(J’4_y5)

1 1 .
ks -x)° + 5k (s —ye) +mg(y, +y, +Esing+y, +y,)
+M,g(y, +a, cos(p, + Qb))+ M,g(ys +a, cos(p, + Q1))
1 1 ,
+5K,‘(V| -d))’ +5Kr(rz —-d,)”

(14)

Generally, the oil film forces F, (x;,y,,X,,»,) and
F(x;,y;,%;,y;) are related to the displacements of the

rotors and their velocities. However, if the misalignment
between two rotors exists, as shown in Fig. 1, the functions of
the oil film forces in bearing 3 can be expressed as,

F, =F, (x, +5cosd,y, +5sing,x, —5sing, y, + 5pcos @) s
F3y:F3y(x4+6cos¢,y4+5sin¢,5c4—5sin¢,y4+5¢5cos¢) (15)

The generalized force vector including nonlinear film forces
on the journal bearings are expressed by,

J=134,6

O={(F,.F,}" i=1346 (16)
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The generalized coordinate system is,

q:{xlaylaxz,y2ax4,y4ax59y5,x69y69¢} (17)
Based on Lagrange’s equation,
d or oT oU
o m =0, ()
dt oqg, 0q, 0q,
where generalized force Q, is
Ql = Fix Q7 = PZx
Q2 = Ey QS = f)Zy
=P =F
Q3 Ix Q9 6x (19)
0, = Ply O = F6y
Os=F.+F, 0,=0
QG = P;y + F4y

Then, the general equations of motion taking into account the
effects of misalignment, mass unbalance and impact rubbing
are expressed as follows,

4=F

q+

Where M K (20)
(m 0 0 0 0 0 0000 0 ]
0 m 0 O 0 0 0000 O
0 0 M, 0 0 000 0 [0
m 0 0 M, 0 0 000O0 O
m 0 0 0 2m 0 0 0 0 0O—mdsing
M=m 0 0 0 0 2m 0 0 0 0 mocosg
m 0 0 O 0 0 M, 000 O
m 0 0 0 0 0 0M, 00 O
m 0 0 O 0 0 0 0m Q@ O
m 00 0 0 0 00 O0m O
0 0 0 0-mdsingmScosg 0 0 000 &°m |
[ —k 0 0 0 0 0 0 0 0
0 k, 0 —k, 0 0 0 0 0 0o 0
-k 0 zk‘+(1—d'—‘)/<, 0 —k 0 0 0 0 0 o0
0 -k 0 Zk‘+(lf('7.‘)K, 0 —k 0 0 0 0 0
0 0 —k 0 K +k, 0 —k, 0 0 0 0
K=| o0 0 —k 0 ky+ky 0 —k, 0 0 0
0 0 0 0 —k, 0 2k3+(1—{:—i)K, 0 )
0 0 0 0 0 —k, 0 A 2k1+(1—;—5)1<, 0 -k 0
0 0 0 0 0 0 —k, 0 K 0 0
0 0 0 0 0 0 0 —k 0 Kk O
0 0 kSsing —kScosg  —kdsing —kJsing 0 0 0 0 0
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F]y - mg
P, +kdcos¢+ M,a,Q cos(p, + Qt)
P, +kdsing + M a, Q" sin(p, + Qt)- Mg
F, +F, +mdég’ cos¢—k,5cos ¢
F,, +F,, +md$’ sing — k,dsing — 2mg
P, + M,a,Q?* cos(p, + Q1)
P, +M,a,Q" sin(p, + Qt)— M, g
F,

6x

|
I

F6y_mg

— mgo cos ¢

3. Nonlinear Dynamic Analysis
A. Parameters of System
M, =2.5x10%%g, M, =10°kg , m =1000kg
a,=0.5mm, a,=04mm, k,=1.0x10’N/m,
k,=12x10'N/m.,K, =25x10°N /m, d, =1mm,
d, =lmm, f =001, ¢c=02mm, £=0.018Pa-s,
R=0.15m, L/2R = 0.25

B. Influence of Parallel Misalignment

For the convenience of calculation composition and analysis,
the dimensionless transformations are introduced as,

x=y=2 p=4
o o 0

Fig. 5 shows the bifurcation diagrams of the generator rotor
and turbine rotor with different parallel misalignments and
mass eccentricities. The response of the rotor system contains
periodic, three-periodic and quasi-periodic motions in the range
of D=0-2.

Fig. 6 illustrates the Poincaré maps, axis orbits, time histories
and amplitude spectrum on the response of the rotor system for
different D.

When misalignment is small, the response of the rotor system
is complicated with the effect of mass eccentricity. At D=0.08,
there exist twenty-two isolated points in the Poincaré map and
two discrete frequency components in the amplitude spectrum.
The rotor center trajectory displays 22T periodic motion in the
axis contrail. As parallel misalignment increasing, the motion
reveals different phenomena. At D=0.5, two discrete frequency
components in the frequency spectrum arise and there is a
closed curve in the Poincaré map. The rotor center trajectory is
irregular, and beat vibration is observed on the time history. All
of these give proof of that the motion is quasi-periodic. The
closed form of the attractor is decomposed in the Poincaré map
at D=0.95 as shown in Fig. 6c¢.

1)
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Fig. 5. Bifurcation diagrams of the generator rotor and turbine rotor response
with parallel misalignment D as a control parameter (¢; = 0.5 mm and e, = 0.4
mm)

axtac
¥

N E Ty -
]
—

x1

e

\
==
o —

@

x

(b)

|u|| lk{ H' w W

- ||H,|\| || .

x
A S—

ERNT Attt :
I %\"ﬂﬂﬂw M‘,w :
: ) /‘\\] ;éw \\I[“[WW\"I\mn“il :

i A4 ”limu\mm\un.mmuw 5

N o / /rﬁﬁ\ - 22

g 2 ) N l it H‘ Epe

1 (U 3 ,."Jﬁ“ﬂ‘,"'!i“""’f'"M"ﬂ'fﬂ‘u.‘
o 7N

O (i
./ |* ||h||\ul\w| M\»l! M‘Ihll”

il

TR
9 'ﬂwll \I’ulu | h’\ |l|’| ! MUM g

N
e S/

©

Fig. 6. Poincaré maps, axis orbits, times-histories and amplitude spectrums on
the response of the generator rotor and turbine rotor at different parallel
misalignment. a) D=0.08,b) D=0.5,¢) D=0.95,d)D=14,¢)D=1.5

At D=1.4, the motion becomes a sub-synchronous vibration
with period-three and its attractor is three isolated points,
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exhibiting three different circular rings in the axis contrail and
different amplitudes in time history correspondingly. As D
exceeds 1.4, the motion comes into period-one because the rotor
system reaches dynamic balance. Fig. 6¢ illustrates the dynamic
characteristics for D=1.5. There exists an isolated point in the
Poincaré map, a limited circle in the rotor center trajectory and
one discrete frequency component in the frequency spectrum,
which represents period-one motion. Although the two rotors
are rigidly coupled by the shafts, dynamic characteristics of the
generator rotor with the impact rubbing force are more complex
than those of the turbine rotor such as axis orbits and time
histories.

From amplitude spectrums of Fig. 6a—d, we can observe
some low frequencies with large amplitude at 0.3-0.4x
components especially, besides 1x component. Amplitude of
the generator rotor at 1x component is increasing constantly,
but it is opposite for the turbine rotor with the increase in
parallel misalignment. At the same time, the low frequency
amplitude of both rotors is decreasing. The response of the sub-
harmonic results forms a coupling fault with parallel axis
misalignment, and the impact friction on the rotor system
produces a larger amplitude of low frequency than that of the 1
x component. The phenomenon, as depicted in Fig. 6a—d, can
be defined as a typical feature for the coupling faults, which
would provide important theory basis for diagnosing the fault
pattern.

C. Influence of Mass Eccentricity

Mass eccentricity of rotor is one of the primary factors
affecting dynamic characteristics of the coupled system. The
graphs shown in Fig. 7 exhibit different bifurcation diagrams of
the system response, where D is the control parameters with
different mass eccentricity of the two rotors. It obviously
demonstrates that the influence of mass eccentricity surpasses
radial vibration of the rotor system.
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Fig. 7. Bifurcation diagrams of the rotor system with D as a control
parameter for different ¢, and e,. a) e; =0, e, =0, b) ¢; = 0.5mm, e, = 0,
c)e =0, e;=0.5mm, d) e, =0.8 mm, e;,= 0.8 mm

In Figure 7a, the bifurcation diagram at e; = e, = 0 is plotted
to show the process from the period-one motion to quasi-
periodic motion. Comparing Fig. 7a and b, we can see that the
instability misalignment of the latter is bigger than that of the

International Journal of Recent Advances in Multidisciplinary Topics, VOL. 6, NO. 10, OCTOBER 2025 123

former. In other words, the region of aperiodic responses is
moved forward. The influence of the mass eccentricity distance
of the generator rotor is more pronounced, as shown in in Fig.
7c. Figure 7 shows the bifurcation diagrams of the rotor system
(1=0.5 mm, e, = 0.4 mm) and the transition from the quasi-
periodic motion to one-periodic motion. Then, as shown in Fig.
7d (e1 = 0.8 mm and e; = 0.8 mm), we can conclude that the
more the mass eccentricity distance increases, the wider the
quasi-periodic range of motion. Numerical simulation results
show that as the mass eccentricity increases, impact rubbing
occurs in advance and partial friction of the rotor is converted
into full friction; finally, the response of the rotor system
transits from quasi-periodic motion to synchronous motion with
one-periodic.

4. Conclusion

In this paper, a model of a rotor-bearing system with parallel
misalignment, impact rubbing and mass imbalance faults is
investigated to study the fault problem of the local friction of
the generator rotor caused by the parallel misalignment and
mass eccentricity. Some nonlinear analysis methods including
bifurcation diagrams, Poincaré maps, axis orbits, time histories
and amplitude spectrum diagrams are used to investigate the
dynamic behavior of the discussed system. The conclusions
obtained from the study are as follows:

1) The response of the rotor system contains periodic, three-
periodic and complicated quasi-periodic motions in the
range D =0~2. There are some low frequencies with large
amplitude in the 0.3~0.4% components with large
amplitude. Although the two rotors are coupled rigidly,
dynamic characteristics of two rotors are slightly
different.

2) The effect of mass eccentricity distance on the radial
vibration of the rotor system is significant. As the mass
eccentricity increases, the aperiodic response region of the
rotor system moves continuously. Computational results
show that the decrease of mass eccentricity and the
increase of stiffness increase the stable-state region of the
system and may prevent the occurrence of the abnormal
vibration.
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