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Abstract: Misalignment and rubbing faults between the rotor 

and stator of rotor-bearing system are the most common faults of 
rotating machines. In this paper, the nonlinear dynamic behavior 
of rotor-bearing system with coupled fault of parallel 
misalignment, unbalance and rubbing is investigated. The 
equations of motion of the rotor system are derived by Lagrange’s 
equations, and many techniques such as bifurcation diagram, 
Poincare diagram, axial orbit, time domain waveform and 
amplitude spectrum diagram are employed to study the dynamic 
behavior of rotor system with rubbing, mass unbalance and 
parallel misalignment faults. The effect of variation of the parallel 
misalignment on various nonlinear phenomena such as periodic, 
three-periodic and quasi-periodic motions is investigated. Finally, 
some significant results for the safe operation and accurate 
identification of faults in rotating machinery are provided. 

 
Keywords: rotor-bearing system, parallel misalignment, impact 

rubbing, nonlinear dynamics, bifurcation. 

1. Introduction 
With the rapid development of science and technology, many 

modern machines are being developed in the machine industry. 
The faults occurring in the modern machines are difficult to 
predict, the cause is very complex and the types of faults are 
very diverse. Misalignment, mass balance and rubbing fault of 
rotor-bearing system are the most common faults of rotating 
machinery. The smaller the clearance between the rotor and 
stator, the higher the efficiency of the rotating machine, but the 
possibility of impact rubbing fault due to the rotor misalignment 
is greatly increased. In the misaligned rotating machine, the 
motion of the rotor may cause mechanical vibration, 
eccentricity of the coupling, oil whirl and oil whip of bearing, 
impact rubbing between rotor and stator, etc., which are very 
dangerous for the stable operation of the system [1]. Therefore, 
it is very important to study the dynamic characteristics of rotor 
misalignment –impact rubbing coupled fault and improve its 
operational stability. 

In the past, a series of studies on the dynamic behaviour of 
rotor-bearing systems with different faults have been carried 
out. The effect of misalignment faults and nonlinear oil-film 
forces on the system response of an unsymmetrical rotor-
bearing system with parallel misalignment was analysed by Li  

 
[2]. Li et al. [3] carried out nonlinear dynamic analysis of rotor-
bearing system with misaligned gear couplings. In their study, 
various frequency components of transversely misaligned rotor 
system and anomalous frequency components in torsional 
direction were found. Redmond [4] identified the influence of 
various factors such as angular misalignment, coupling stiffness 
and static preload caused by misalignment between the two 
rotors on the dynamic stability and vibration characteristics of 
two rigid rotors connected with misaligned flexible couplings. 
Their study has a very important significance in the field of 
nonlinear vibration of rotor-bearing systems. Simon [5] 
investigated the influence of parameters based on Monte Carlo 
simulations in large-scale turbines, where the coupling 
misalignment and mass unbalance were considered as 
undetermined vibrations. 

Several studies have been carried out to discuss the nonlinear 
bearing viscous force analysis model and the effect of the oil 
film force on the response of the system. Ma et al. [6] studied 
the effect of the film instability of sleeve bearings on some 
nonlinear vibration mechanisms of a misaligned rotor system. 
A nonlinear oil film force analysis model of short journal 
bearing was proposed and the effect of oil film forces on the 
system response of a nonlinear system was investigated [7]-[9]. 
Ji [10] studied the complex dynamics of a simple rotor with one 
loose end bearing, and Chu [11] investigated the various types 
of cyclic motion, quasi-cycles and chaos of a system with 
varying rotational speed. 

The study of rotor-bearing systems with various hybrid faults 
has been further performed, for example, the equations of 
motion of Jeffcott rotor with hybrid fault due to bearing 
loosening and impact rubbing were established and the effect of 
hybrid fault on rotor system stiffness was analysed by 
Muszynska [12]. The nonlinear dynamic equations of the 
hydro-turbine generator were established and the influence of 
some parameters such as generator rotational speed, rotor mass 
eccentricity, etc. on the radial vibration characteristics of the 
generator shaft system was analysed by Gustavsson [13]. Their 
study showed that the system response is mainly a simple 
periodic motion, but a quasi-periodic motion may occur in some 
parts. Ma et al. [14] proposed a coupled vibration model of the 
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generator and building machine foundation, in which the 
bearing uncertainty and the interconnection of the plant 
building and the generator were taken into account. Wei [15] 
studied the nonlinear bearing dynamic characteristics and the 
influence of the flexibility of the plant building machine 
foundation on the dynamic characteristics of a hydro turbine-
generator by using the finite element method. 
 

 
Fig. 1.  Rotor-bearing system with coupled fault 

 
Most of the above studies focus on the simple faults of rotor-

bearing systems. However, the most frequent faults in rotor-
bearing systems are due to mass unbalance or impact rubbing. 

In this paper, a nonlinear dynamic model and differential 
equations of motion of rotating system with various vibration 
faults are proposed based on the theory and method of nonlinear 
rotor dynamics. In addition, many techniques such as 
bifurcation diagram, Poincare diagram, axial orbit, time domain 
waveform and amplitude spectrum diagram are employed to 
study the dynamic behavior of rotor system with rubbing, mass 
unbalance and parallel misalignment faults. 

2. Dynamic Model 

A. System Descriptions 
Fig. 1 illustrates a rotor-bearing system with coupled fault of 

parallel misalignment, unbalance and impact rubbing, in which 
two rotors with parallel misalignment δ are rigidly connected to 
each other. It is assumed that each rotor is mounted in the center 
of a flexible shaft supported by a nonlinear oil film bearing and 
rotates in its own plane without the gyroscopic effect. 

B. Mathematical Model 
1) Impact Rubbing Force Model 

Fig. 2 illustrates the impact rubbing force model of rotor 1, 
in which the elastic impact between rotor and stator is 
considered. O3, O2 and O2' are the geometric center of bearing, 
the geometric center and the center of mass of rotor 1, 
respectively; Ω is the rotational speed; d1 is the clearance 
between stator and rotor 1; a1 is the mass eccentricity; r1 denotes 
the radial displacement of the rotor shaft; φ0 is the initial phase 
of mass unbalance. 

According to the Coulomb friction law, the friction force is 
decomposed in the normal and tangential directions. Then, 
when the rotor 1 is impacted by stator, the normal collision 
force PN  and the tangential rubbing force PT can be expressed 
as 
 

 
Fig. 2.  Impact rubbing force model of rotor 1 
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where Kr is the radial stiffness of the stator, and f is the 
rubbing coefficient between the rotor and the stator.  

The component of the impact rubbing force along x and y 
directions as follows. 
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  From Eqs. (1) and (2), the impact rubbing forces of rotor 1 
along the x and y directions can be written as, 
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Similarly, the impact rubbing forces of rotor 2 along the x 
and y directions are, 
 

 
Fig. 3.  Schematic diagram of oil film bearing 
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2) The model of Nonlinear Oil Film Force 
Fig. 3 illustrates a schematic diagram of oil film bearing. In 

order to study the dynamic characteristics of rotor bearing 
system, the nonlinear oil film force of bearing should be known. 
However, the calculation of nonlinear oil film forces is difficult 
without some assumptions such as infinitely long bearings or 
very short bearings [16]. 

Assuming a very short sliding bearing for the simplification 
of the problem, the Reynolds equation can be written as [17]. 
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where )cos1(cos θεθ +=+= cech  is the thickness 
of oil film; e and φ are the equilibrium positions the rotor 
centerline; θ is the circumferential coordinate; μ is the visiocity; 
R is radius of bearing; L is length of bearing, c is the bearing 
clearance; ε is the bearing eccentricity. 

If the relative pressure at the bearing tip is zero, the oil 
pressure can be expressed as, 
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Note that the boundary condition for the pressure could not 
be imposed in the circumferential direction. Therefore, the 
analytical method can only be used for journal bearings without 
shaft grooves by using Sommerfeld boundary conditions. Then, 
the radial and tangential oil film forces as follows. 
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From Eq. (7), the oil film forces in Cartesian coordinate 
system are expressed as, 
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3) Equations of Motion 
The total kinetic energy of the system can be expressed as, 
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where M1, M2 and m means the equivalent masses including 
the rotors and the shafts, respectively; a1, a2  are the eccentricity 
of rotors, respectively; Ω is the rotational speed. 

When a collision between the stator and the rotor occurs, i.e. 
11 dr ≥ , 22 dr ≥  , the potential energy can be expressed as, 
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                       (10) 
Fig. 4 shows the motion relationship between two adjacent 

rotors with parallel misalignment, in which ϕ is the angle 
between the x-axis and the straight line connecting nodes 3 and 
4. 
 

 
Fig. 4.  The motion relationship between the adjacent rotors with the parallel 

misalignment 
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The displacements of two adjacent rotors are coupled 
because of the parallel misalignment between them, and thus 
the constraints are imposed on the rotor system based on the 
analytical dynamics theory. 

Thus, the constraint function is defined as, 
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2
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 where δ means rotor misalignment.  
The above constraint is holonomic and can be expressed in 

another form by introducing an angle variable as, 
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By substituting the constraint Eq. (12) into Eqs. (9) and (10), 

the kinetic and potential energies can be written as, 
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Generally, the oil film forces ),,,( iiiiix yxyxF   and 

),,,( iiiiiy yxyxF   are related to the displacements of the 

rotors and their velocities. However, if the misalignment 
between two rotors exists, as shown in Fig. 1, the functions of 
the oil film forces in bearing 3 can be expressed as, 
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The generalized force vector including nonlinear film forces 
on the journal bearings are expressed by, 
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The generalized coordinate system is, 
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 where generalized force iQ  is 
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Then, the general equations of motion taking into account the 

effects of misalignment, mass unbalance and impact rubbing 
are expressed as follows, 

Where FKM =+ qq   (20) 
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3. Nonlinear Dynamic Analysis  

A. Parameters of System 

kgM 4
1 105.2 ×= , kgM 5

2 10= , kgm 1000= ,

mma 5.01 = , mma 4.02 = , mNk /100.1 7
1 ×= , 

mNk /102.1 7
2 ×= , mNKr /105.2 8×= , mmd 11 = , 

mmd 12 = , 01.0=f , mmc 2.0= , sPa ⋅= 018.0µ , 

mR 15.0= , 25.0L/2 =R  

B. Influence of Parallel Misalignment 
For the convenience of calculation composition and analysis, 

the dimensionless transformations are introduced as, 
 

 
δ
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δ
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δ
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Fig. 5 shows the bifurcation diagrams of the generator rotor 
and turbine rotor with different parallel misalignments and 
mass eccentricities. The response of the rotor system contains 
periodic, three-periodic and quasi-periodic motions in the range 
of D=0–2.  

Fig. 6 illustrates the Poincaré maps, axis orbits, time histories 
and amplitude spectrum on the response of the rotor system for 
different D.   

When misalignment is small, the response of the rotor system 
is complicated with the effect of mass eccentricity. At D=0.08, 
there exist twenty-two isolated points in the Poincaré map and 
two discrete frequency components in the amplitude spectrum. 
The rotor center trajectory displays 22T periodic motion in the 
axis contrail. As parallel misalignment increasing, the motion 
reveals different phenomena. At D=0.5, two discrete frequency 
components in the frequency spectrum arise and there is a 
closed curve in the Poincaré map. The rotor center trajectory is 
irregular, and beat vibration is observed on the time history. All 
of these give proof of that the motion is quasi-periodic. The 
closed form of the attractor is decomposed in the Poincaré map 
at D=0.95 as shown in Fig. 6c. 
 

 
Fig. 5.  Bifurcation diagrams of the generator rotor and turbine rotor response 
with parallel misalignment D as a control parameter (e1 = 0.5 mm and e2 = 0.4 

mm) 
 

 

 

 

 
Fig. 6.  Poincaré maps, axis orbits, times-histories and amplitude spectrums on 

the response of the generator rotor and turbine rotor at different parallel 
misalignment. a) D = 0.08, b) D = 0.5, c) D = 0.95, d) D = 1.4, e) D = 1.5 

 
At D=1.4, the motion becomes a sub-synchronous vibration 

with period-three and its attractor is three isolated points, 
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exhibiting three different circular rings in the axis contrail and 
different amplitudes in time history correspondingly. As D 
exceeds 1.4, the motion comes into period-one because the rotor 
system reaches dynamic balance. Fig. 6e illustrates the dynamic 
characteristics for D=1.5. There exists an isolated point in the 
Poincaré map, a limited circle in the rotor center trajectory and 
one discrete frequency component in the frequency spectrum, 
which represents period-one motion. Although the two rotors 
are rigidly coupled by the shafts, dynamic characteristics of the 
generator rotor with the impact rubbing force are more complex 
than those of the turbine rotor such as axis orbits and time 
histories.  

From amplitude spectrums of Fig. 6a–d, we can observe 
some low frequencies with large amplitude at 0.3–0.4× 
components especially, besides 1× component. Amplitude of 
the generator rotor at 1× component is increasing constantly, 
but it is opposite for the turbine rotor with the increase in 
parallel misalignment. At the same time, the low frequency 
amplitude of both rotors is decreasing. The response of the sub-
harmonic results forms a coupling fault with parallel axis 
misalignment, and the impact friction on the rotor system 
produces a larger amplitude of low frequency than that of the 1 
× component. The phenomenon, as depicted in Fig. 6a–d, can 
be defined as a typical feature for the coupling faults, which 
would provide important theory basis for diagnosing the fault 
pattern. 

C. Influence of Mass Eccentricity 
Mass eccentricity of rotor is one of the primary factors 

affecting dynamic characteristics of the coupled system. The 
graphs shown in Fig. 7 exhibit different bifurcation diagrams of 
the system response, where D is the control parameters with 
different mass eccentricity of the two rotors. It obviously 
demonstrates that the influence of mass eccentricity surpasses 
radial vibration of the rotor system. 
 

 
Fig. 7.  Bifurcation diagrams of the rotor system with D as a control 

parameter for different e1 and e2. a) e1 = 0, e2 = 0, b) e1 = 0.5mm, e2 = 0,  
c) e1 = 0, e2 = 0.5 mm, d) e1 = 0.8 mm, e2 = 0.8 mm 

 
In Figure 7a, the bifurcation diagram at e1 = e2 = 0 is plotted 

to show the process from the period-one motion to quasi-
periodic motion. Comparing Fig. 7a and b, we can see that the 
instability misalignment of the latter is bigger than that of the 

former. In other words, the region of aperiodic responses is 
moved forward. The influence of the mass eccentricity distance 
of the generator rotor is more pronounced, as shown in in Fig. 
7c. Figure 7 shows the bifurcation diagrams of the rotor system 
(e1=0.5 mm, e2 = 0.4 mm) and the transition from the quasi-
periodic motion to one-periodic motion. Then, as shown in Fig. 
7d (e1 = 0.8 mm and e2 = 0.8 mm), we can conclude that the 
more the mass eccentricity distance increases, the wider the 
quasi-periodic range of motion. Numerical simulation results 
show that as the mass eccentricity increases, impact rubbing 
occurs in advance and partial friction of the rotor is converted 
into full friction; finally, the response of the rotor system 
transits from quasi-periodic motion to synchronous motion with 
one-periodic. 

4. Conclusion 
In this paper, a model of a rotor-bearing system with parallel 

misalignment, impact rubbing and mass imbalance faults is 
investigated to study the fault problem of the local friction of 
the generator rotor caused by the parallel misalignment and 
mass eccentricity.  Some nonlinear analysis methods including 
bifurcation diagrams, Poincaré maps, axis orbits, time histories 
and amplitude spectrum diagrams are used to investigate the 
dynamic behavior of the discussed system. The conclusions 
obtained from the study are as follows:  

1) The response of the rotor system contains periodic, three-
periodic and complicated quasi-periodic motions in the 
range D =0~2. There are some low frequencies with large 
amplitude in the 0.3~0.4× components with large 
amplitude. Although the two rotors are coupled rigidly, 
dynamic characteristics of two rotors are slightly 
different.  

2) The effect of mass eccentricity distance on the radial 
vibration of the rotor system is significant. As the mass 
eccentricity increases, the aperiodic response region of the 
rotor system moves continuously. Computational results 
show that the decrease of mass eccentricity and the 
increase of stiffness increase the stable-state region of the 
system and may prevent the occurrence of the abnormal 
vibration. 
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