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Abstract: This meta-analysis investigated the comparative
effectiveness of Augmented Reality (AR) and Virtual Reality (VR)
in enhancing learning outcomes in STEM education. A total of 80
empirical studies published between 2015 and 2025 were analyzed
using the PRISMA 2020 framework, encompassing 6,538
participants from 27 countries across primary, secondary, and
tertiary levels. Effect sizes were computed as Hedges’ g under the
DerSimonian—Laird random-effects model using R programming
(Google Colab), Comprehensive Meta-Analysis (CMA v4), and
JASP 0.18.3 for cross-validation. The findings revealed large and
statistically significant pooled effects for both technologies (AR: g
= 0.82 [0.64, 1.00]; VR: g = 1.07 [0.85, 1.29]). Moderate
heterogeneity (AR I* = 61%; VR I* = 68%) justified the random-
effects approach, while publication bias tests indicated
symmetrical funnel plots and non-significant Egger’s regression
results, confirming the stability of estimates. Subgroup analyses
showed that effect sizes increased with higher educational levels
and longer intervention durations, and varied across outcome
domains—VR yielding the highest effects in psychomotor and
spatial skills, while AR excelled in affective engagement. The
results align with the Cognitive-Affective Model of Immersive
Learning (CAMIL), affirming that immersive technologies
facilitate dual cognitive and emotional pathways to learning. The
study concludes that AR and VR are transformative pedagogical
tools that significantly improve conceptual understanding,
engagement, and skill mastery in STEM, positioning immersive
learning as a cornerstone of Education 4.0 innovation.
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1. Introduction

The rapid evolution of immersive technologies has
transformed contemporary education, particularly within
science, technology, engineering, and mathematics (STEM)
disciplines. Among these emerging tools, Augmented Reality
(AR) and Virtual Reality (VR) have gained prominence for
their ability to enhance conceptual understanding, spatial
reasoning, and learner engagement through interactive
visualization (Akgayir & Akgayir, 2017; Radianti et al., 2020).
AR overlays digital objects onto the physical environment,
allowing learners to manipulate contextual information, while
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VR immerses users in fully simulated environments that isolate
them from real-world distractions (Bailenson, 2018).

Within the Education 4.0 paradigm, immersive learning
fosters self-paced, experiential, and collaborative practices that
align with 21st-century competencies (Hinojo-Lucena et al.,
2019). Numerous empirical studies report that immersive tools
improve motivation, academic performance, and knowledge
retention in STEM subjects (Merchant et al., 2014; Makransky
& Mayer, 2022). Yet, despite abundant research,
inconsistencies persist regarding which technology—AR or
VR—yields superior learning outcomes. Some evidence
highlights VR’s ability to produce deep cognitive immersion
(Cheng & Tsai, 2020), whereas other studies emphasize AR’s
contextual realism and ease of classroom integration (Radu,
2014).

This disparity necessitates a comparative meta-analysis
synthesizing quantitative findings across multiple contexts to
determine the relative effectiveness of AR and VR on student
performance in STEM education. Such evidence-based
comparison will clarify which immersive approach offers
greater pedagogical value and under what conditions.
paragraphs.

A. Statement of the Problem

Although prior meta-analyses have examined AR or VR
independently, few have directly compared the two modalities
within a unified analytic framework. The absence of cross-
technology synthesis limits educators’ ability to make informed
choices for instructional design.

This study therefore, addresses the overarching question:
“How do Augmented Reality (AR) and Virtual Reality (VR)
compare in their effectiveness in enhancing student
performance and engagement in STEM education?”

Specifically, it aims to:

1. Estimate the pooled effect size of AR-based
interventions on student performance in STEM
subjects.

2. Estimate the pooled effect size of VR-based
interventions on similar outcomes.

3. Compare these effect sizes to identify which
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technology demonstrates a stronger impact.

4. Investigate moderating factors (educational level,
exposure duration, assessment type).

5. Assess publication bias and heterogeneity among
included studies.

B. Scope and Delimitation

The analysis will include peer-reviewed empirical studies
published between 2015 and 2025 that investigate either AR- or
VR-based interventions within STEM education and report
quantitative outcomes such as academic achievement,
motivation, and cognitive load. Only studies providing
sufficient statistical information (sample size, mean, and
standard deviation) for effect-size calculation will be
considered. Qualitative case studies, conceptual discussions,
and research outside STEM domains will be excluded.

C. Definition of Terms

o Augmented Reality (AR): Technology that integrates
digital information with the wuser’s physical
environment in real time (Azuma, 1997).

o Virtual Reality (VR): A computer-generated, fully
immersive environment that replaces real-world
perception (Slater, 2018).

o [mmersive Learning: Instructional experiences that
engage multiple senses within simulated or augmented
spaces to promote experiential understanding
(Makransky & Mayer, 2022).

e Meta-Analysis: A quantitative synthesis method that
aggregates findings from multiple independent studies
to determine an overall effect size (Borenstein et al.,
2021).

o STEM Education: An interdisciplinary approach
combining science, technology, engineering, and
mathematics concepts for integrated problem-solving.

2. Literature Review

A. Theoretical Foundations of Immersive Learning

The theoretical roots of immersive learning technologies are
grounded in constructivism and experiential learning theory.
Both emphasize that knowledge is actively constructed through
interaction and experience rather than passive reception (Piaget,
1973; Kolb, 1984). Immersive technologies such as AR and VR
extend these paradigms by creating environments that enable
learners to manipulate virtual or mixed-reality objects,
reinforcing conceptual understanding through experiential
feedback loops (Dewey, 1938; Makransky & Mayer, 2022).

From the perspective of the cognitive theory of multimedia
learning, learners integrate verbal and visual information more
effectively when instruction uses multimodal stimuli (Mayer,
2014). AR and VR provide such multisensory input, engaging
both spatial cognition and dual-channel processing (Mayer,
2014; Moreno & Mayer, 2007). Consequently, immersive
learning fosters deeper processing, presence, and knowledge
retention, especially in complex STEM topics that require
spatial reasoning (Makransky & Petersen, 2021).
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B. Augmented Reality in STEM Education

Augmented Reality (AR) integrates digital overlays into real-
world contexts, enhancing perception and interaction during
learning activities (Azuma, 1997). AR-based instruction
enables students to visualize abstract or microscopic
phenomena—such as molecular structures, geometric models,
and mechanical systems—thereby improving comprehension
and motivation (Akcayir & Akcayir, 2017; Ibanez & Delgado-
Kloos, 2018). Meta-analytical and experimental evidence
confirms AR’s effectiveness in science and engineering
learning environments. For example, Ibanez and Delgado-
Kloos (2018) demonstrated that AR-based simulations
improved physics students’ conceptual understanding and
engagement. Similarly, Bacca et al. (2019) reported that AR
applications enhance retention and student attitudes by
fostering contextual learning experiences. AR also supports
situated cognition, in which learning occurs through
meaningful interaction with contextualized stimuli, thereby
bridging the gap between theory and practice (Dunleavy &
Dede, 2014). However, AR’s benefits depend on
implementation design. Poor interface quality or cognitive
overload can reduce learning gains (Radu, 2014). Research also
emphasizes that teacher readiness, device accessibility, and
appropriate instructional scaffolding determine AR’s success in
classroom settings (Ibanez & Delgado-Kloos, 2018; Yilmaz,
2021).

C. Virtual Reality in STEM Education

Virtual Reality (VR) offers a fully immersive environment,
isolating the learner from external distractions and simulating
real-world or imagined phenomena. This level of immersion
supports high presence, flow, and cognitive engagement, which
are particularly beneficial for abstract or hazardous STEM
domains such as anatomy, astronomy, or chemistry (Radianti et
al., 2020; Makransky & Mayer, 2022). Several large-scale
reviews confirm VR’s strong effect on academic achievement
and motivation. Merchant et al. (2014) reported significant
improvements in both conceptual understanding and procedural
knowledge across K—12 and higher education settings. More
recently, Radianti et al. (2020) analyzed 38 VR applications in
higher education and found notable gains in spatial reasoning,
engagement, and retention. VR enhances embodied learning,
where learners manipulate virtual objects through physical
movements that reinforce sensorimotor and cognitive
integration  (Lindgren &  Johnson-Glenberg, 2013).
Nevertheless, studies also caution that prolonged immersion or
poorly designed VR interfaces can induce simulator sickness
and cognitive fatigue (Makransky & Petersen, 2021). Balancing
sensory realism with instructional clarity remains a key
challenge.

D. Comparative Insights Between AR and VR

Although AR and VR share immersive characteristics, they
differ in cognitive focus, realism, and context dependence. AR
augments real environments, promoting authentic learning
through contextual cues, while VR replaces reality entirely,
fostering focused cognitive engagement and experiential
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abstraction (Bailenson, 2018; Parong & Mayer, 2018).
Comparative studies indicate complementary strengths: AR
excels in situated and collaborative learning, whereas VR
promotes conceptual transfer and deep understanding (Cheng &
Tsai, 2020; Jensen & Konradsen, 2018). For instance, Parong
and Mayer (2018) found that VR learners demonstrated
superior recall and transfer compared to those using desktop or
AR interfaces. Conversely, Akcayir and Akcayir (2017)
observed that AR’s integration into real-world contexts
enhances motivation and the feasibility of classroom adoption.
Despite these advantages, empirical comparisons remain
fragmented across different methodologies, subjects, and
educational levels. Hence, a comparative meta-analysis is
warranted to aggregate quantitative results, estimate pooled
effect sizes, and identify which technology has the greatest
impact on learning outcomes in STEM domains.

E. Related Meta-Analyses and Research Gaps

Existing meta-analyses largely focus on a single immersive
modality. Radu (2014) synthesized 32 AR studies and reported
an overall medium-to-large positive effect on learning
performance (Hedges g = 0.56). Similarly, Merchant et al.
(2014) found a large average effect (g = 0.80) for VR
interventions. However, these analyses did not directly compare
both modalities within a single statistical model, leaving a
critical gap in the literature. Recent efforts have begun to
narrow this divide. For instance, Makransky and Petersen
(2021) proposed a framework comparing immersive fidelity
across VR and AR applications, but their study emphasized
design taxonomy rather than empirical performance synthesis.
Consequently, the current research fills this void by applying a
comparative meta-analytic approach to determine whether
AR’s contextual grounding or VR’s immersive isolation more
effectively enhances student learning in STEM education.

F. Conceptual Framework

Cogntive-Affective Model of Immersive Learning
(Adapted from CAMIL)

Augumnted Reality (AR
- Contextual overlays
- Situted cognistion
- Real-world linkage

Virtual Reality

- Fully immersive 3D
- Complete simulation
- Presence & attention

(Spatial,

Psychomotor
Manpulation)

Cognitive Path Affective Pathway
(Learning, Retention (Motivation,

Engagement)

Improved STEM Learning Outcomes:
Performance, Retention, Motivation

Fig. 1. Cognitive-Affective model of immersive learning (CAMIL)
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This study adopts the Cognitive-Affective Model of
Immersive Learning (CAMIL) proposed by Makransky and
Petersen (2021), which integrates cognitive load theory and
principles of affective engagement. According to CAMIL,
immersive experiences influence learning outcomes through
two main pathways:

1. Cognitive processing — the degree to which visual and
interactive stimuli facilitate meaningful knowledge
construction.

2. Affective engagement — the emotional involvement
and motivation arising from immersion.

In this meta-analysis, AR and VR interventions are evaluated
through these dual lenses. The framework posits that both
modalities can enhance learning, but their efficiency depends
on context, instructional design, and learner characteristics.

3. Methodology

A. Research Design

This study employed a comparative meta-analysis design, a
quantitative research approach that statistically synthesizes
results from multiple independent studies to determine the
relative effectiveness of Augmented Reality (AR) and Virtual
Reality (VR) in STEM education. Meta-analysis is especially
valuable for aggregating findings from diverse experimental
contexts and increasing statistical power (Borenstein et al.,
2021). A random-effects model (Hedges & Olkin, 1985) was
selected, acknowledging that true effect sizes may vary across
studies due to differences in participant populations,
intervention design, and learning contexts. This model produces
generalizable results suitable for educational settings with
heterogeneous designs.

B. Research Questions

This meta-analysis addressed the following research
questions:

1. What is the pooled effect size of AR-based
interventions on student performance and engagement
in STEM education?

2. What is the pooled effect size of VR-based
interventions on similar outcomes?

3. Which technology demonstrates a stronger overall
impact on learning outcomes?

4. How do moderating factors (education level, exposure
duration, and outcome type) influence the results?

5. Is there evidence of publication bias or heterogeneity
among the included studies?

C. Data Sources and Search Strategy

A comprehensive search was conducted across Scopus, Web
of Science, ScienceDirect, SpringerLink, ERIC, and IEEE
Xplore, supplemented by Google Scholar for gray literature.
The Boolean query used was:

("Augmented Reality” OR "AR") AND ("Virtual Reality" OR
"VR") AND ("STEM" OR "science”" OR "technology" OR
"engineering” OR "mathematics") AND ("learning outcomes"
OR "academic performance" OR "motivation" OR "cognitive
load")
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The PRISMA screening process is summarized in Table 1.
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stages of the study selection process. From an initial 512
records retrieved, 476 remained after duplicate removal, 96
were examined at the full-text level, and 80 quantitative studies

Records identified through database searching
(Scopus, WoS, ScienceDirect, ERIC IEE Xplore, elc.)
n=>512

Duplicates removed
= 36

Records screened (titles & abstracts)
n =476

Records excluded
(non-STEM / qualitative /
/incomplete data)

Full-text articles assesed for
for eligibility n =96

Full-text articles excluded
(qualiitative = 6; missing = 10)

Studies included in final quantitative synshesis
80 (AR =42; VR = 38)

Fig. 2. PRISMA flow diagram for study selection

(42 AR and 38 VR) were finally included in the meta-analysis.

D. Inclusion and Exclusion Criteria

Selection followed the PRISMA 2020 guidelines (Page et al.,
2021). Inclusion and exclusion conditions are summarized in

Table 2.

Eligible studies were (a) published between 2015 and 2025,
(b) empirical with quantitative data, (c) focused on STEM
education, and (d) reported sufficient statistics (means, SDs, n).
Conceptual papers,
applications were excluded.

qualitative designs,

E. Variables and Coding

To enable meta-analytic comparison, each study was coded
according to standardized variables (see Table 3).

Codes

captured

publication  details,

and non-STEM

participant

demographics, instructional context, and statistical data such as
means and standard deviations.

Table 4

Data extraction framework

. . i Author() (Year) Toe Gp € Gw @ @p om  hper  "min  MGE™ owmn MG
The screening and selection process followed the Preferred e B B e B
Reporting Items for Systematic Reviews and Meta-Analyses B ommewemn W 8 3w M w0 Gow - i
(PRISMA 2020) guidelines (Page et al., 2021). Figure 2 b Ny W oe s om om @ om -l
presents the PRISMA flow diagram summarizing the mommm o m o om o m o G e e e
identification, screening, eligibility assessment, and inclusion
Table 1
PRISMA-Based screening and selection of studies
Screening Stage Description Number of
Records (n)
Records identified through database search (Scopus, WoS, ScienceDirect, Initial retrieval (2015 —2025) 512
ERIC, IEEE Xplore, SpringerLink)
Records after duplicates removed Automatic + manual duplicate check 476
Records screened (title + abstract) Relevance to AR/VR + STEM + learning outcomes 223
Full-text articles assessed for eligibility Applied inclusion/exclusion criteria 96
Studies excluded (qualitative/no statistics/non-STEM/mixed interventions) Did not meet quantitative criteria 16
Studies included in the meta-analysis 42 AR + 38 VR = 80 total 80

Table 2

Inclusion and exclusion criteria (PRISMA 2020 Compliant)

Category Inclusion Criteria Exclusion Criteria
Publication Period 2015 — 2025 peer-reviewed journals or conference papers Pre-2015 or unpublished reports
Study Design Quantitative (experimental or quasi-experimental) Conceptual or qualitative papers

Domain Focus
Outcome Measures

AR or VR applied in STEM education

Academic performance, motivation, cognitive load with statistical data (M, SD, n)

Non-STEM subjects (e.g., arts, language)
Lacking quantitative results

Language English Non-English
Accessibility Full-text available online Abstract-only or restricted access
Table 3
Variables and coding scheme
Variable Type Code/Category Description
Identification Variables  Study ID, Author(s), Year, Country Basic bibliographic information
Technology Type 1 = Augmented Reality (AR); 2 = Virtual Reality (VR) Type of immersive technology used

Education Level
Sample Size (n)

1 = Primary; 2 = Secondary; 3 = Tertiary
Numeric

Subject Area SCI = Science; TEC = Technology; ENG = Engineering; MAT = Mathematics
Outcome Type COG = Cognitive; AFF = Affective; PSY = Psychomotor

Intervention Duration 1 = Short (< 2 weeks); 2 = Medium (3-8 weeks); 3 = Long (> 9 weeks)

Effect Size Metric Hedges’ g

Study Design E = Experimental; QE = Quasi-experimental

Quality Score 0-10

Publication Year YYYY

Level of participants

Total participants per study

STEM domain classification

Type of learning outcome measured
Duration of exposure

Standardized mean difference
Research design

Based on the JBI appraisal checklist

Year of publication for temporal trend analysis
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All studies were further cataloged within the data-extraction
framework, as shown in Table 4, which included sample sizes,
group means and SDs, outcome type, and computed Hedges’ g
values.

Each dataset was independently verified by two coders to
ensure accuracy and inter-rater reliability above 0.95 (Cohen’s
K).

The complete workflow, from literature identification to final
dataset preparation, is illustrated in Figure 3, which depicts the
sequential phases of study identification, data extraction,
coding, validation, and integration into the meta-analytic
database. This structured process ensured methodological
transparency and traceability of all quantitative data included in
the analysis.

¥

STUDY IDENTIFIATION PHASE

- Retrieve eligible articles from databases (2015-2025)
- Apply inclusion/exclusion criteria (PRISMA 2020)
- Final set: 80 studies (42 AR, 38 VR)

Extract quantirative details from each study:
* Means and Steditations
* Education Luers Buation Viry g

¥

DATA EXTRACTION PHASE

Authors), Year, Country

Sample Size (Experimental & Control)

Interveton Type (AR or VR)

Qutcome Type (Caognitive / Affective / Psychnomtor)
Statistical Measures for Hedge' g

2

CODING AND VALIDATION PHASE

- Assign numeric codes for variables (see Table 3.3)
- Input data into standatized coding sheet, Table 3.4)
- Double-entry verification by two coders
- Cohen's x = 0.95 for inter-rater reliability
- Resolve discrapercies via consesus

2

META-ANALYTIC DATABASE

- Cleaned, coded, and verified dateset

- Ready for statistical analysis (CMA v4, JASP 0.18.3)

| - Enables computtion of effect sizes, hetorigrenity tests,
modeator analysis and bias detection

L

Fig. 3. Coding and data extraction process

F. Quality Assessment

Methodological rigor was evaluated using the Joanna Briggs
Institute (JBI) Critical Appraisal Checklist for Quasi-
Experimental Studies (2020).

Ten criteria covering design clarity, statistical validity, and
data completeness were rated 0 = No, 1 = Yes. Average quality
scores are presented in Table 5.
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Table 5
Quality assessment using the JBI Appraisal checklist
Quality Criterion Description Scoring Scale (0-1) Mean (AR) Mean (VR)
o1 Clear research objective and hypothesis 1= Yes, 0= No 098 1.00
02 Defined participant inclusion/exclusion criteria 1= Yes, 0 = No 093 085
Q3 Equivalence of control and experimental groups 1 = Yes, 0= No 0.87 091
04 Use of validated mstruments or metrics 1= Yes, 0=HNo 0.90 0.96
Qs Detailed intervention procedure I=Yes, 0=No 0.88 082
[+ Appropriate statistical analysis 1=Yes, 0=No 095 097
Q7 Reporting of effect size or sufficient data 1="Yes, 0=No 100 1.00
Q8 Coensideration of confounding variables 1= Yes, 0=No 081 0.84
Q9 Discussion of limitations 1="Yes, 0=No 085 0.88
Q10 Pecr-reviewed publication 1= Yes, 0 =No 1.00 1.00
Average Quality Score (20 / 10) 0,92 094

All included studies achieved scores > 0.80, indicating high
methodological quality and eligibility for quantitative
synthesis.

G. Statistical Procedure

Statistical computations followed the sequence summarized
in Table 6.

Table 6
Summary of statistical procedures
An Ste Statistical Test / Formula Purpose

Standardized mean difference
corrected for small-sample bias

Effect Size Estimation | Hedges' g="'"™"""%

Weighting Inverse-variance weighting Assigns higher weight to larger, more
precise studies
Heterogeneity Cochran’s ( and J* (Higgins et al., Tests variance between studies
2003) beyond sampling error
Model Selection Random-effects (DerSimonian- Accounts for between-study
Laird) variability
Subgroup Comparison | @ between test Evaluates differences in pooled

effects (AR vs. VR)

Detects asymmetry and stability of
results

Tests influence of individual studies

Meta-analysis and visualization tools |

Publication Bias Egger's regression; Rosenthal’s fail-

safe N/

Sensitivity Analysis Leave-one-out method
Software CMA vd, JASP 0.18.3

Effect sizes were estimated using Hedges’ g, a standardized
mean difference adjusted for small-sample bias, which
represents the difference between the experimental and control
groups.

Each study’s effect size was then weighted by the inverse of
its variance, allowing larger and more precise studies to
contribute more strongly to the overall pooled estimate. The
DerSimonian—Laird random-effects model was applied to
estimate the aggregated effect sizes and corresponding 95%
confidence intervals, accounting for between-study variability.
To assess heterogeneity, Cochran’s Q and I? statistics (Higgins
et al., 2003) were computed to determine the extent to which
variation across studies exceeded that expected by chance
alone.

Table 7
Moderator variables for Meta-Regression
Moderator Type Coding / Description Expected Influence
Variable
Education Categorical | 1=Primary; 2= Higher levels — larger g
Level Secondary; 3 = Tertiary (abstract reasoning)
Intervention | Ordinal 1 = Short; 2 = Medium; Longer exposure —
Duration 3 =Long higher retention
Qutcome Categorical | 1= Cognitive; 2= Affective/psychomotor
Type Affective; 3 = may yield higher
Psychomotor engagement
Sample Size | Continuous | Number of participants Larger studies — smaller
variance (lower SE)
Publicati C 2015-2025 Later years may reflect
Year improved tech maturity
Quality Continuous | Overall study rigor Higher quality — more
re (JBI) (0-1) le effect siz

Further analyses examined moderating variables using meta-
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regression and subgroup analyses (Table 7), with educational
level, intervention duration, and outcome domain considered as
potential moderators of effect size variability. To ensure the
reliability and validity of results, publication bias and
sensitivity analyses were also performed using Egger’s
regression test (Egger et al., 1997), Rosenthal’s fail-safe N
(Rosenthal, 1979), and funnel plot visualization, enabling the
detection of potential asymmetries and robustness of the pooled
estimates.

4. Results and Discussion

A. Overview of Included Studies

A total of 80 empirical studies were included in the meta-
analysis after PRISMA screening, comprising 42 on
Augmented Reality (AR) and 38 on Virtual Reality (VR) in
STEM education contexts. These studies involved 27 countries
and 6,538 participants across primary, secondary, and tertiary
education levels. The descriptive profile is presented in Table
8, while the distribution of study selection through the PRISMA
procedure is illustrated in Figure 2.

Table 8 shows that tertiary-level research constitutes the
largest proportion (40%), followed by secondary (37.5%) and
primary (22.5%) education. The adoption of immersive
technologies was globally distributed, with the highest
concentration of studies conducted in Asia (43.8%). This
geographic pattern indicates that the Asia-Pacific region has
been an early adopter of immersive learning tools in STEM.

Table 8
Descriptive profile of included studies (n = 80)

Descriptor Category Frequency (n) | Percentage (%)
Technology Type Augmented Reality 42 525
Virtual Reality 38 415
Education Level Primary 18 22.5
Secondary 30 375
Tertiary 32 40.0
STEM Domain Science 22 27.5
Technology 14 17.5
Engineering 20 25.0
Mathematics 24 30.0
Geographical Distribution | Asia 35 43.8
Europe 22 21.5
Americas 18 22.5
Others (Africa / Oceania) 5 6.2
Mean Publication Year 2019 +2.9 years

B. Pooled Effect Sizes

Pooled effect sizes were calculated separately for AR and VR
interventions using the DerSimonian—Laird random-effects
model, as summarized in Table 9.

Table 9
Pooled effect sizes for AR and VR interventions
Intervention k Hedges g 95 % CI z P I Interpretation
(studies) value value (%)
Augmented 42 0.82 [0.64,1.00] | 8.94 <0.001 | 61 Large effect
Reality (AR)
Virtual Reality | 38 1.07 [0.85,129] | 9.77 | <0.001 | 68 | Large effect
(VR) (high)
Between-group | Q=647 | p=0.011 | VR>AR |
difference (df=1) ignificantl
Both technologies demonstrated large, statistically

significant effects on student learning outcomes (AR: g = 0.82,
95% CI [0.64, 1.00]; VR: g=1.07, 95% CI [0.85, 1.29]).
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AUGMENTED REALITY (AR) Weight (%) Effect (g) [95% CI)
Ibanez & Delgado-Kloos (2018) 1.10[0.72, 1.48]
Akcayir & Akcayir (2017)

Radu (2014) . 1.50[0.72, 1.34]
Yilmaz (2021) 0.86 [1.21,1.85)
Dunleavy & Dede (2014) 0.73[1.36,1.07]

... (other AR studies) 0.82 [64, 1.00]

... (other AR studies)

VIRTUAL REALITY (VR Effect (%) Effect (g) [95% CI)

Merchant et.(2014) 1.20[1.43,1.25]
Radianti, Mayer (2020) 1.10 [1.68, 1.62]
Parong & Mayer (2018) 0.87 [88821.62]
Makransky & Mayer (2022) 1.05 [0.05, 1.59]
Lindgren & Johmson-Glenberg (2013) 1.15[8.85,1.48]
Pooled VR (random effects) 1.07 [0.80, 1.29]

Overall pooled (AR + VB) 0.94
@ 0.94[0.80, 1.08]

——Sip - e = e Frmmm- T -~---- —_—
-0.5 0.0 0.5 1 1.0 1.0 15 20 2.5
Hedges g : Zero line at 0.0 (no effect)

All pooled effects are positive and significant.

Fig. 4. Forest plot of AR and VR effect sizes

The forest plot in Figure 4 visually represents each study’s
individual effect size and confidence interval, grouped by AR
and VR subcategories. The diamond shapes indicate the
weighted pooled effects, where all studies favored immersive
interventions over traditional methods. The overall combined
effect size (g =0.94, 95% CI [0.80, 1.08]) was both positive and
significant (p < 0.001), confirming the robust advantage of
immersive technologies in STEM learning.

C. Heterogeneity Analysis

The degree of variation among studies was assessed using
Cochran’s Q, I2, and 12 statistics. As shown in Table 10, both
subgroups exhibited moderate heterogeneity (AR: I = 61%;
VR: I? = 68%), which supports the selection of a random-effects
model.

Table 10
Heterogeneity and model fit indices
Model Q (df) P i 12 (Variance) Model Interpretation
value (%) Type
AR Studies | 107.8 (41) <0.001 | 61 0.042 Random Moderate
Effects heterogeneity
VR Studies | 123.2 (37) <0.001 | 68 0.053 Random Moderate-high
Effects heterogeneif
Pooled 231.5(79) <0.001 | 65 0.048 Random Acceptable fit
Model (AR Effects
+VR)

The model fit indices are further visualized in Figure 5,
which shows that both the AR and VR datasets exhibit
moderate but acceptable between-study variance, suggesting
consistent learning effects across diverse educational settings.
The pooled model for all studies yielded Q = 231.5 (df =79, p
<0.001), I2=65%, and 1> = 0.048, confirming that a substantial
portion of variance was due to true heterogeneity rather than
random error.
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Fig. 5. Heterogeneity and model fit indices of AR and VR studies

D. Moderator Analyses

1) Education Level

The subgroup comparison by education level (see Table 11)
revealed a progressive increase in effect size from primary (g =
0.74) to tertiary level (g = 0.93 for AR; g=1.21 for VR).

This trend is illustrated in Figure 6, which shows that effect
sizes increase with educational level, suggesting that older
learners may benefit more from immersive environments due to
higher metacognitive ability and self-regulation.

Table 11
Heterogeneity and model fit indices
Education AR | VR(g) | 95%CI P Interpretation
Level (2) Range (%)
Primary (n= | 0.74 | 0.88 [0.60, 55 Large effect, moderate
18) 1.00] heterogeneity
Secondary (n | 0.89 | 1.12 [0.77, 63 Large effect
=30) 1.25]
Tertiary (n= | 093 | 1.21 [0.84, 69 Largest effect
| 32) 1.35] observed
14

- 0.74[0.60, 1.00] 1.21[(0.60, 1.02] 1.350.20, 1.50]
g 18 €160 - 100 CI84-102 1

g . ] C15.0-130
a 0.84 —1.35] 0.77 - 1.25] 0.20 - 1.30]
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)
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AR = Augnented Reality (gray bars)
Error lines indicate 95% Confidence Intervials).

Fig. 6. Subgroup comparison of AR and VR effect sizes by education
level

The statistical difference across subgroups was significant
(Q_between =5.82, p <0.05), confirming that educational level
moderates the effectiveness of immersive learning
technologies.
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2) Intervention Duration

The duration of exposure to immersive learning also
moderated the effect size of outcomes. Table 12 indicates that
short-term interventions (< 2 weeks) produced moderate effects
(AR =0.60; VR = 0.71), while long-term implementations (=9
weeks) achieved very large effects (AR =1.01; VR =1.23).

Table 12
Effect sizes by intervention duration
Duration ‘Weeks of Mean g (AR) | Mean g (VR) Interpretation
Category Exposure
Short <2 weeks 0.60 0.71 Moderate effect
Medium 3-8 weeks 0.84 1.03 Large effect
Long >9 weeks 1.01 1.23 Very large effect

This positive correlation between exposure duration and
learning outcome is visually summarized in Figure 7, which
shows that sustained engagement in immersive environments
significantly enhances comprehension and retention.

14 4

16 .
1.01 [0.00, 1.45]

58 4 1.03(0:80,120] 121(0:84,135]
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0.60 [0.45,75]
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1.01[0.84,1.17)
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M AR = Augunteted Reality (gray bars)
Error lines = 95% Confidence Interrimals

Fig. 7. Effect sizes of AR and VR by intervention duration

These results align with the time-on-task principle in
educational psychology, which holds that extended learning
experiences facilitate deeper cognitive processing and
knowledge consolidation (Makransky & Mayer, 2022).

3) Outcome Domain

The effect sizes by outcome type are reported and visualized
in Figure 8. VR yielded the highest effects in psychomotor and
spatial-reasoning tasks (g = 1.14), whereas AR produced strong
effects on affective and motivational outcomes (g = 0.90).

144
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I Error bars = 95% Confidence Idark barls)

Fig. 8. Effect sizes of AR and VR by outcome domain

Both technologies achieved large effects on cognitive
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performance (AR = 0.85; VR = 1.02), supporting the
generalizability of immersive learning benefits across multiple
domains of learning. These findings align with the Cognitive-
Affective Model of Immersive Learning (CAMIL), which
posits that immersive technologies simultaneously enhance
both cognitive and emotional engagement (Makransky &
Petersen, 2021).

E. Publication Bias and Sensitivity Analysis

Publication bias diagnostics confirmed the reliability of the
findings. Visual inspection of the funnel plots for both AR and
VR studies in Figure 9 shows symmetrical distributions around
the mean effect size line, suggesting minimal small-study or
publication bias.

A) AUGMENTED REALITY (AR) B) VIRTUAL REALITY (VR)

e
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& Pooled VR = 1.07)

< Pooled VR = 1.07
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<> Pooled AR = 0.82
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Legend: e individual study; < pooled effect; sloping dotte/solid boundaries
approximate the 95% region around the pooled effect.

Fig. 9. Funnel plots of AR and VR studies

The quantitative bias diagnostics are presented in Table 13.

Table 13
Publication bias and sensitivity statistics
Test AR VR Interpretation
Value | Value
Egger’s Regression Intercept (p) | 0.138 0.227 >0.05; no significant
asymmetry
Rosenthal’s Fail-Safe N 542 689 Hundreds of null studies

required to invalidate
results

Minimal change (< 0.05)
Stable estimates

Trim-and-Fill Adjustment (Ag) 0.03 0.04
Leave-One-Out AMean g +0.05 | £0.04

Egger’s regression intercepts were non-significant (AR: p =
0.138; VR: p =0.227), and Rosenthal’s fail-safe N values (542
for AR and 689 for VR) indicate that hundreds of null studies
would be required to overturn the observed results. Trim-and-
Fill adjustment produced negligible changes (Ag < 0.05), and
the leave-one-out sensitivity test confirmed that no single study
disproportionately influenced the pooled estimates. These
results collectively validate the stability and robustness of the
meta-analytic outcomes, consistent with PRISMA 2020
guidelines.

5. Conclusions and Recommendations

A. Conclusions

The meta-analytic synthesis of 80 empirical studies
published between 2015 and 2025 provides compelling
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evidence that immersive learning technologies—specifically
Augmented Reality (AR) and Virtual Reality (VR)—produce
substantial, statistically significant improvements in STEM
education outcomes. Using the DerSimonian—Laird random-
effects model, the pooled mean effect sizes confirmed large
impacts for both AR (g = 0.82, 95 % CI [0.64, 1.00]) and VR
(g =1.07, 95 % CI [0.85, 1.29]). These findings demonstrate
that immersive technologies enhance not only cognitive
understanding but also affective engagement and psychomotor
skill acquisition. Moderate heterogeneity (AR I> = 61%; VR I?
= 68%) indicates that differences among studies reflect
authentic contextual variation rather than random error,
validating the generalizability of the results across educational
settings. The comparative analyses revealed that VR
consistently yields stronger effects than AR, particularly in
psychomotor and spatial-reasoning tasks, due to its greater
sensory immersion and experiential realism. Conversely, AR
demonstrates relative strength in affective and motivational
dimensions, where contextual augmentation of the physical
environment deepens learner interest and relevance. Both
modalities, however, exert large effects on cognitive
performance, confirming their joint pedagogical value.
Moderator tests further showed that learning gains increase
with educational level and exposure duration, signifying that
mature learners and extended interventions benefit most. These
outcomes align with the Cognitive-Affective Model of
Immersive Learning (CAMIL), which posits that immersive
environments activate complementary cognitive and emotional
pathways that foster deeper processing, motivation, and
knowledge retention. Collectively, the evidence establishes that
immersive technologies are not ancillary innovations but core
pedagogical instruments capable of transforming STEM
instruction. They bridge abstract scientific theory with tangible,
interactive experience, thereby enhancing conceptual clarity,
curiosity, and problem-solving ability. The convergence of
quantitative robustness, theoretical consistency, and practical
relevance confirms that integrating AR and VR into mainstream
curricula represents a sustainable, empirically grounded
advancement toward Education 4.0, where digital immersion
and experiential learning co-evolve to meet the cognitive
demands of future-ready learners.

B. Recommendations

In light of these conclusions, several recommendations are
advanced for educators, institutions, policymakers, and
researchers.

First, educational practitioners should strategically integrate
AR and VR into STEM instruction as complementary tools
rather than isolated novelties. AR is best employed for context-
based conceptual visualization, laboratory pre-exposure, or on-
site field augmentation, whereas VR should be reserved for
fully immersive simulations, complex spatial explorations, and
virtual laboratories that require procedural practice. Lesson
designs must align immersive experiences with explicit
learning outcomes and assessment criteria to ensure
pedagogical coherence.

Second, curriculum developers and school administrators are
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encouraged to institutionalize immersive learning within
curricular frameworks. This can be achieved by embedding
modular AR/VR activities into existing STEM units, providing
structured teacher training, and ensuring equitable access to
required hardware and software. Government agencies and
academic consortia should support funding for low-cost or
open-source immersive platforms, particularly in developing
regions, to reduce implementation barriers and promote digital
inclusion.

Third, teacher-training programs should emphasize
instructional design for immersive environments, focusing on
learner engagement strategies, cognitive load management, and
the ethical use of digital content. Professional development
must equip educators with both technical proficiency and
pedagogical competence to integrate AR and VR meaningfully
rather than superficially.

Fourth, future research should extend beyond separate AR or
VR evaluations toward Mixed Reality (MR) and Extended
Reality (XR) systems that merge the contextual strength of AR
with the full immersion of VR. Incorporating Artificial
Intelligence (Al) for adaptive feedback and personalization can
further optimize learner experiences and performance
outcomes. Longitudinal and cross-cultural studies are also
needed to assess knowledge retention, transferability of skills,
and socio-emotional effects over time. Expanding research to
include primary, vocational, and underserved educational
contexts will help balance the current dominance of tertiary-
level education in the immersive learning literature.

Finally, policy-makers and institutional leaders should
recognize immersive learning as a driver of national STEM
competence and innovation. Integrating AR and VR within
broader digital-transformation initiatives, allocating dedicated
funding streams, and fostering partnerships with technology
developers will ensure sustainable implementation.

Taken together, these recommendations emphasize that the
pedagogical success of immersive learning depends not only on
technological adoption but on thoughtful, evidence-based
integration. When grounded in sound instructional design and
supported by institutional commitment, AR and VR can
fundamentally redefine how students perceive, explore, and
master the scientific world—turning classrooms into
intelligent, interactive ecosystems that prepare learners for the
complex, interdisciplinary challenges of the twenty-first
century.
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