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Abstract: Autonomous vehicles (AVs) offer substantial 

improvements in safety and efficiency; however, global perception 
benchmarks are primarily based on structured traffic 
environments in developed countries and do not capture the 
informal and complex road conditions common in Nigeria and 
other African nations. To address this gap, the present study 
developed a custom dataset comprising 8,093 real-world images 
from Nigerian roads, annotated with 22 contextually relevant 
classes, including tricycles (Keke NAPEP), Okada motorcycles, 
street vendors, potholes, animals, and degraded traffic signs. 
Three lightweight You Only Look Once (YOLO) models (v5, v8, 
and v11) were trained and evaluated using extensive data 
augmentation. YOLOv5 demonstrated the highest performance, 
achieving an mAP@0.5 of 96.8%, a peak F1-score of 0.94, and 
real-time inference at 82 FPS on an NVIDIA RTX 2060, 
outperforming YOLOv8 and YOLOv11 while requiring the fewest 
parameters. Notably, strong results were observed for safety-
critical classes (pedestrians: 98.3%; tricycles: 92.6%), while 
degraded signage and small or occluded objects remained the 
primary limitations. These findings indicate that high-accuracy, 
vision-only perception for autonomous vehicles is feasible in 
resource-constrained, unstructured African traffic environments 
using low-cost cameras and consumer-grade hardware, provided 
that a locally collected dataset and robust augmentation strategies 
are employed. This work establishes a scalable, cost-effective 
benchmark and provides publicly available resources to support 
AV development in Nigeria and comparable developing regions. 

 
Keywords: autonomous vehicles, custom dataset, Nigerian 

roads, object detection, real-time detection, vision-only 
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1. Introduction 
Autonomous vehicles (AVs) have the potential to 

significantly transform transportation by reducing human error, 
enhancing road safety, and lowering traffic fatalities (Caesar et 
al., 2020; Di Lillo et al., 2023; Soni, 2024). Object detection, 
the automated identification and localisation of objects in 
images or video, is fundamental to AV perception. It enables 
the classification of entities such as pedestrians, vehicles, traffic 
signs, and barriers within the operational environment (Du, 
2023). However, existing global benchmarks, including KITTI, 
nuScenes, and Waymo Open, do not capture the complexity of 
informal transport modes, unpredictable pedestrian crossings, 
and degraded signage that are prevalent on Nigerian roads.  

 
These standard datasets are characterised by predictable traffic 
patterns and infrastructure that supports advanced sensing 
technologies (Caesar et al., 2020; Tan et al., 2025). 

Unlike the structured road networks represented in many 
global datasets, road environments in developing countries such 
as Nigeria are characterised by informal transport modes, 
including tricycles and motorcycles, roadside vendors 
encroaching on traffic lanes, unpredictable pedestrian 
crossings, degraded signage, potholes, speed bumps, and a 
heterogeneous mix of motorised and non-motorised traffic. 
These distinguishing features are not reflected in the global 
datasets commonly used for AV training (Tucho, 2022; 
Achenef et al., 2025). The resulting variability increases 
detection challenges and often leads to models trained on global 
datasets failing to recognise obstacles unique to African 
contexts (Mutabarura, Muchuka, & Segera, 2025). 

Deep learning methods, particularly convolutional neural 
networks (CNNs), have substantially advanced object detection 
by utilising hierarchical feature learning from annotated images 
(Deng & Li, 2024; Mahajan & Mane, 2023). CNNs are a class 
of artificial neural networks designed to process grid-like data, 
such as images, and form the backbone of single-stage 
architectures. Approaches such as You Only Look Once 
(YOLO) facilitate real-time inference and balance precision and 
latency, making them suitable for AV deployment 
(Montgomerie-Corcoran, Toupas, Yu, & Bouganis, 2023; 
Wang et al., 2024). In these single-stage methods, the model 
predicts object locations and classes directly from the input 
image in a single network pass. However, these models exhibit 
diminished effectiveness in underrepresented contexts that lack 
localised data reflecting the unique characteristics of African 
traffic (Mutabarura, Muchuka, & Segera, 2025). 

Road transport in Nigeria accounts for over 90% of passenger 
and freight mobility, and rapid vehicle growth combined with 
infrastructure deficits contributes to chaotic traffic conditions 
(Uhegbu, 2020). Objects such as tricycles ("Keke NAPEP"), 
roadside vendors, and jaywalking pedestrians are prevalent but 
are rarely represented in global AV datasets. Consequently, AV 
perception systems trained on standard benchmarks often fail to 
detect or classify these critical objects, posing significant safety 
risks. 

Real-Time YOLOv5-Based Object Detection for 
Autonomous Vehicles on Nigerian Roads 
Martins E. Irhebhude1, Modibbo Tukur Ahmed2, Ibrahim Aliyu Ibrahim3, Isah Shuaibu4* 

1Professor, Department of Computer Science, Faculty of Military Science and Interdisciplinary Studies, Nigerian Defence Academy, Kaduna State, Nigeria 
2,3Kaduna Polytechnic, Kaduna, Nigeria 

4Lecturer, Department of Geography, Nigerian Defence Academy, Kaduna, Nigeria 



Irhebhude et al.    International Journal of Recent Advances in Multidisciplinary Topics, VOL. 6, NO. 12, DECEMBER 2025 20 

To address these challenges specific to the Nigerian context, 
this study develops an object detection system tailored to the 
unique conditions of Nigerian roads, with a focus on 
constructing an annotated dataset that accurately represents 
these environments. The objectives are to compile a primary 
dataset of images from Nigerian roads annotated with common 
objects such as tricycles, street vendors, pedestrians, and other 
typical obstacles; to develop a system capable of detecting and 
classifying traffic signs from camera images in real time; to 
detect and classify both static and dynamic objects in Nigerian 
settings; and to evaluate the accuracy and efficiency of the 
developed system in real-time object recognition and 
classification. This research advances AV equity in low- and 
middle-income countries and aligns with United Nations 
Sustainable Development Goals 9 (industry, innovation, and 
infrastructure) and 11 (sustainable cities and communities). 
Given the limited research on vision-only perception systems 
adapted to African contexts (Wang et al., 2024; Achenef et al., 
2025), these findings contribute to the development of resilient 
and cost-effective AV solutions for emerging economies. 

2. Literature Review 
Ahmed (2025) developed a real-time perception system that 

integrates YOLOv5 for object detection with a monocular 
depth-estimation network to improve autonomous driving 
performance under varied environmental conditions. The study 
addressed challenges such as lighting variation, occlusion, and 
limited training data by applying data augmentation and 
transfer learning, achieving higher detection accuracy than 
earlier approaches based on Faster R-CNN and SSD. Although 
distance estimation was a major focus, the findings reinforce 
the effectiveness of YOLO-based detectors in real-time traffic 
environments. The relevance of this work to the present study 
lies in its demonstration of YOLOv5’s robustness in complex 
road scenarios, further supporting the use of YOLO 
architectures for vision-only autonomous navigation on 
developing-world road networks. 

Tan et al. (2025) proposed SceneDiffuser++, a diffusion-
based generative world model enabling city-scale, point-to-
point traffic simulation. Trained on the Waymo Open Motion 
Dataset, it jointly performs scene generation, long-horizon 
agent prediction, occlusion reasoning, dynamic agent 
spawning/removal, and traffic-light simulation. The model 
significantly outperforms log-replay baselines in terms of 
realism across extended rollouts. Although tested in structured 
North American cities, the work underscores the need for 
generative capabilities in highly dynamic, unstructured 
environments like Nigerian roads, supporting the vision-only 
perception approach and dataset-centric strategy of the present 
study. 

Mutabarura et al. (2025) developed a custom African road-
obstacles dataset containing rare classes, such as livestock and 
wildlife, frequently encountered on sub-Saharan roads, thereby 
addressing a significant gap in global benchmarks. Three 
YOLO versions (v3, v5, v8) were evaluated, with YOLOv5 
achieving the highest mAP@0.5 of 94.68 % when trained with 
offline data augmentation. The authors emphasised that 

augmentation dramatically improved performance on minority 
classes and concluded that YOLOv5 remains the most effective 
lightweight architecture for real-time obstacle detection in 
African driving conditions. These findings directly support the 
superiority of YOLOv5 observed in the present Nigerian study 
and validate the critical role of region-specific datasets and 
augmentation strategies in overcoming domain gaps. 

Achenef et al. (2025) conducted a review of intelligent 
control systems for autonomous vehicles, focusing on 
perception, decision-making, and motion control in global 
contexts. They highlighted that most breakthroughs in object 
detection and sensor fusion have been validated on structured 
datasets from North America, Europe, and China, whereas very 
limited research addresses the unique challenges of 
unstructured African roads, including informal transport 
modes, degraded signage, and mixed traffic with livestock. The 
authors noted the scarcity of region-specific datasets and the 
poor generalisation of globally trained models in low- and 
middle-income countries, aligning directly with the motivation 
of the present Nigerian study. They concluded that future 
progress in African AV deployment requires custom datasets 
and lightweight, vision-only architectures, findings that 
strongly support the high performance achieved in this study 
using only low-cost cameras and YOLOv5 on a Nigerian-
specific dataset. 

Di Lillo et al. (2023) compared Waymo’s fully driverless 
service with human drivers using third-party liability claims 
data. Over 3.8 million rider-only miles, Waymo recorded zero 
bodily-injury claims (vs. human baseline 1.11 cpmm) and 
reduced property-damage claims by 76 % (0.78 vs. 3.26 cpmm). 
The authors concluded that a mature vision-based Level-4 
system is significantly safer toward other road users than human 
drivers, especially vulnerable ones. These findings strongly 
support the safety potential of the high detection rates achieved 
in the present study for pedestrians, tricycles, and motorcycles 
in Nigerian traffic conditions. 

Du (2023) reviewed deep learning-based object detection 
techniques for autonomous vehicles, categorising them into 
two-stage (R-FCN, Mask R-CNN) and one-stage (SSD, 
RetinaNet, YOLO) algorithms. Among one-stage detectors, 
YOLO was highlighted for its superior real-time performance 
through single-pass prediction of bounding boxes and class 
probabilities, making it particularly suitable for resource-
constrained autonomous driving applications. The author 
concluded that YOLO variants consistently outperform other 
one-stage methods in speed–accuracy trade-offs on standard 
benchmarks, supporting the selection of YOLOv5 as the core 
detector in the present Nigerian road study, where real-time 
inference on consumer-grade hardware is essential. 

3. Methodology 
A vision-based object detection system was developed for 

AVs, with a focus on Nigerian roads. A custom dataset of 8,093 
images was collected, covering both urban and rural areas. 
These images included tricycles (Keke NAPEP), motorcycles, 
roadside vendors, pedestrians, and conventional vehicles. They 
were captured under various lighting and weather conditions. 
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The dataset was divided into training (7,000 images), validation 
(1,000 images), and test (93 images) sets to support robust 
generalisation. 
 

 
Fig. 1.  Dataset composition and annotation analysis 

Distribution of object instances across classes (top left), spatial distribution of bounding 
box annotations (top right), normalised centre coordinates of annotated objects (bottom 
left), and normalised bounding box dimensions showing object scale variation (bottom 
right). Source: Researcher's Analysis (2025) 

 
Three YOLO variants (YOLOv5, YOLOv8, and YOLOv11) 

were tested for real-time object detection. YOLOv5 was chosen 
for its superior performance, particularly in Average Precision 
at 50% IoU (mAP50) and balanced precision-recall. The single-
stage detection in YOLOv5 processes entire images in a single 
pass, enabling real-time AV inference. 

Model training was performed on an NVIDIA GeForce RTX 
2060 GPU (6GB VRAM) using Python 3.11 and PyTorch 2.7.0 
with CUDA acceleration. YOLOv5 version 8.3.130 was 
utilised as the training framework. The hyperparameters 
included a batch size of 8, input image resolution of 640×640 
pixels, and the AdamW optimiser (a gradient-based 
optimisation algorithm) with a learning rate of 0.0004. Box loss 
was used for bounding-box regression, classification loss for 
class prediction, and Distribution Focal Loss (DFL), which 
helps the model focus on difficult examples, were applied to 
improve detection of challenging objects. Data augmentation 
was implemented using RandAugment with random 
transformations such as rotation, horizontal flipping, and colour 
adjustment to increase model robustness. Training was 
conducted for 50 epochs, with early stopping applied at epoch 
25 to prevent overfitting if validation performance did not 
improve for 10 consecutive epochs. Learning rate scheduling 
was used to optimise convergence. 

Model performance was evaluated using standard object 
detection metrics. Precision, defined as the proportion of true 
positives to total positive predictions, quantifies the accuracy of 
detected objects: 

 

Precision =
TP

TP + FP
 

 
Recall quantified the ratio of true positives to actual 

positives: 
 

Recall =
TP

TP + FN
 

 
Mean Average Precision at 50% IoU (mAP50) evaluated 

average precision across all object classes at 0.5 IoU threshold: 
 

𝑚𝑚𝑚𝑚𝑚𝑚50 = 𝑁𝑁1𝑖𝑖 = 1∑𝑁𝑁𝐴𝐴𝐴𝐴(𝑖𝑖) 
 

where N represents the number of classes. Mean Average 
Precision across IoU thresholds 0.5 to 0.95 (mAP50-95) 
provided comprehensive performance assessment: mAP50-95 
= (1/10)∑ᵢ₌₁¹⁰ mAP(IoU = 0.5 + 0.05·i). Precision-recall curves 
visualized detection trade-offs, while confusion matrices 
identified misclassification patterns across object classes. 

Where N is the number of classes and AP(i) is the Average 
Precision for class iii. 

mAP50-95: This metric calculates the mean Average 
Precision at multiple IoU thresholds (from 0.5 to 0.95) and is 
given by: 

 
mAP50 − 95 = 15� i

= 15mAP(IoU = 0.5 + 0.05 ⋅ i)mAP50-95

=
1
5
�mAP(IoU = 0.5 + 0.05 ⋅ i)mAP50
5

i=1
− 95 = 51i

= 1�5mAP(IoU = 0.5 + 0.05 ⋅ i) 

 
Where iii takes values from 0 to 5 corresponding to IoU 

thresholds of 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and 
0.95. In addition to these metrics, Precision-Recall curves were 
plotted to visually assess the model's performance, and a 
confusion matrix was generated to analyse the misclassified 
objects in detail. 

4. Results and Discussion 

A. Training and Validation Performance 

 
Fig. 2.  Training and validation curves of the YOLOv5 model.  

Top row (from left to right): training box loss, classification loss, and DFL loss. Bottom 
row: validation box loss, classification loss, DFL loss, precision, recall, mAP@0.5, and 
mAP@0.5:0.95. All curves show stable convergence and no overfitting. Source: 
Researcher’s Analysis (2025) 

 
The YOLOv5 model was trained for 25 epochs with early 
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stopping. Figure 2 presents the complete training and validation 
curves. The three loss components (box_loss, cls_loss, and 
dfl_loss) decrease steadily on both training and validation sets 
without divergence, confirming successful convergence and the 
absence of overfitting. Validation precision, recall, mAP@0.5, 
and mAP@0.5:0.95 all rise smoothly and plateau at high values 
(mAP@0.5 ≈ 0.968, mAP@0.5:0.95 ≈ 0.742), indicating 
excellent generalisation on the held-out validation split. 

B. Model Comparison and Selection Rationale 
Table 1 

Model MAP comparison 
S.No. Model mAP (%) 
1 YOLOv5 97 
2 YOLOv8 96 
3 YOLOv11 96 

 
The benchmarking results in Table 1 compare YOLOv5's 

performance with other models, including YOLOv8 and 
YOLOv11. YOLOv5 outperforms these models, particularly in 
real-time object detection and classification, due to its faster 
inference and lower computational resource requirements. This 
makes YOLOv5 especially suitable for deployment in resource-
constrained environments typical of developing countries such 
as Nigeria. 

The YOLOv5 demonstrated superior convergence 
characteristics on the specific dataset size and composition used 
in this study. The 8,093-image dataset, while substantial for 
regional studies, represents a moderate-scale training corpus 
where excessive architectural complexity may induce 
overfitting rather than improved generalisation. YOLOv5's 
relatively simpler architecture, with fewer parameters than 
YOLOv8 and YOLOv11, may have provided a better 
complexity-data size match, enabling more stable training 
dynamics. Also, the architectural innovations in YOLOv8 and 
YOLOv11 (improved backbone networks, modified detection 
heads, enhanced feature pyramid networks) may provide 
advantages primarily on extremely large-scale datasets or 
specific challenging scenarios (dense small objects, extreme 
aspect ratios) that were not predominantly represented in the 
Nigerian road dataset. 

The findings of this study are consistent with those of 
Mutabarura et al. (2025), who identified YOLOv5 as the most 
effective model for African obstacle detection. Similarly, 
Alahdala et al. (2024) reported that YOLOv5 (0.94) 
outperformed YOLOv7 (0.441) and YOLOv8 (0.927). The 
consistent performance across all three YOLO variants (96-
97% mAP range) indicates that dataset quality, annotation 
accuracy, and regional specificity have a greater impact on 
detection accuracy than architectural sophistication in this 
application domain. This implies that deploying YOLOv5 may 
be preferable for resource-constrained autonomous vehicle 
implementations in developing countries, where inference 
speed and hardware requirements directly affect system cost 
and accessibility. 

C. Precision-Recall and Confidence Analysis 
The Precision-Recall curve (Figure 3) demonstrates robust 

detection performance, achieving an mAP@0.5 of 0.968 across 

all classes. Precision remains above 0.95 until recall reaches 
approximately 0.80, indicating that the model detects the 
majority of objects with very few false positives, which is a 
highly desirable characteristic for safe autonomous navigation. 

 

 
Fig. 3.  Precision-Recall curve for YOLOv5 model performance 

Source: Researcher’s Analysis (2025) 
 

 
Fig. 4.  Recall-Confidence curve showing near-perfect recall (>99 %) at 

low confidence thresholds 
Source: Researcher’s Analysis (2025) 

 
The Recall-Confidence curve (Figure 4) shows that recall 

exceeds 99% at low confidence thresholds and remains above 
80% until the confidence threshold exceeds 0.9. The sharp 
drop-off at very high thresholds confirms that the model’s 
confidence scores are well calibrated. 
 

 
Fig. 5.  F1-Confidence curve of the YOLOv5 model on the test set (peak 

F1 = 0.94 at confidence threshold ≈ 0.518) 
Source: Researcher’s Analysis (2025) 
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The F1-Confidence curve (Figure 5) identifies the optimal 
operating point, with a peak F1-score of 0.94 at a confidence 
threshold of approximately 0.518. The F1-score stays above 
0.90 across a wide confidence range (0.25–0.65), providing 
substantial flexibility: lower thresholds can be selected to 
maximise recall for safety-critical classes (e.g., pedestrians, 
tricycles, animals), while higher thresholds favour precision 
when false positives must be minimised. The consistent 
behaviour of individual class curves (grey lines) in both Figures 
3 and 4 indicates stable training without overfitting or severe 
class-specific biases. 

D. Class-Specific Detection Performance 

 
Fig. 6.  Normalised confusion matrix showing the model's classification 

results 
Source: Researcher’s Analysis (2025) 

 
The normalised confusion matrix (Figure 6) reveals clear 

performance patterns across the 22 object classes. Traffic 
infrastructure elements consistently achieved the highest 
accuracy, with traffic lights, red lights, lane markings, and 
pedestrian zebra crossings all attaining perfect or near-perfect 
normalised scores (≥ 0.98), confirming the reliable recognition 
of safety-critical regulatory features. Stop signs (0.98), railway 
crossings (0.98), and T-intersection signs (0.96) also exhibited 
excellent performance, reflecting the benefit of standardised 
geometric shapes. 

Conventional vehicles performed strongly, with buses (1.00) 
and cars (0.92) showing robust detection. Informal transport 
modes presented greater challenges due to visual similarity and 
variability. Keke tricycles achieved 0.93 normalised accuracy 
but exhibited minor confusion with Okada motorcycles (0.05 
cross-error). In contrast, motorcycles registered the lowest 
vehicle-class score (0.83), partly due to their smaller footprint 
and diverse rider configurations. Wheelbarrows, representing 
non-motorised informal cargo transport, reached 0.90 but were 
occasionally misclassified as background when stationary or 
heavily occluded. 

Pedestrian detection was highly reliable (normalised 
accuracy 1.00), even in unstructured crossing scenarios typical 
of Nigerian roads. Animal detection attained 0.95, which is 
commendable given the wide variety of livestock species and 
contexts. Potholes scored 0.90, indicating solid hazard 

detection despite challenges from pavement texture and 
shadows. 

Warning signs (0.82) and yellow traffic lights (0.91) were the 
weakest categories, primarily misclassified as background. This 
reflects real-world degradation, including fading, damage, non-
standard designs, and variable mounting, commonly observed 
in Nigerian infrastructure. Directional signs (U-turn: 1.00, T-
intersection: 0.96) substantially outperformed general 
warnings, benefiting from more consistent visual cues. 

Overall, off-diagonal errors remained low and systematic, 
with no catastrophic safety-related confusions (e.g., pedestrian 
→ background or animal → background) exceeding 0.02. 
These patterns highlight that remaining limitations are largely 
attributable to physical infrastructure conditions and object 
scale rather than fundamental model deficiencies. 

E. Visual Detection Performance Analysis 

 
Fig. 7.  Sample test images showing YOLOv5 detection outputs under 

varying conditions (daylight, overcast, and low-light) 
Source: Researcher’s Analysis (2025) 

 
Visual inspection of detection outputs on the test set (Figures 

7 and 8) confirmed robust bounding-box localisation across 
diverse environmental conditions and object configurations, 
validating the quantitative metrics observed in the precision-
recall, confidence, and confusion-matrix analyses. The 
detection visualisations demonstrate several key capabilities 
essential for real-world autonomous vehicle deployment. 

The model successfully detected traffic signs in the test 
images, including pedestrian crossings (cyan bounding boxes, 
class ID 12), no-turn prohibitions (magenta bounding boxes, 
class ID 5), traffic lights (cyan or blue bounding boxes, class 
IDs 14/0), and warning signs (yellow boxes). These detections 
occurred consistently across a range of lighting conditions, 
including both bright daylight and overcast/low-light scenarios. 
In addition, the model maintained high detection accuracy 
regardless of the sign’s scale, effectively localising both nearby, 
detailed signs and those that appeared small due to distance, 
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which demonstrates the system’s proficiency in multi-scale 
feature extraction. In analysing the visual output, the model 
correctly detected and classified multiple distinct objects in 
complex, cluttered scenes containing vehicles, pedestrians, 
signs, and infrastructure. Specifically, several test images 
showed between five and eight different objects accurately 
identified in a single frame, with only a limited occurrence of 
duplicate or missed detections. This clarity in object 
identification and the minimal errors it produces are indicative 
of the system’s robustness in visually challenging traffic 
environments. 
 

 
Fig. 8.  Additional test images showing YOLOv5 detection outputs in 

dense urban scenes and varying weather conditions. 
Source: Researcher’s Analysis (2025) 

 
Road infrastructure element detection showed reliable 

performance across different conditions. Lane markings, 
potholes (orange boxes, class ID 18), U-turn zones, and traffic 
lights were accurately localised despite variations in image 
quality, perspective angles, and pavement conditions. The 
model proved especially effective in pothole detection, 
correctly recognising road surface irregularities of various 
sizes, depths, and lighting environments, which is crucial for 
safety and vehicle suspension management in autonomous 
systems. The detection system maintained consistency between 
grayscale and colour images, demonstrating resilience to 
colour-space differences that can occur with different camera 
sensors, lighting conditions, or image processing techniques. 
This robustness is particularly advantageous for deployment 
scenarios where camera specifications may vary or where 
operation in low-light or nighttime conditions requires 
alternative sensor configurations. 

However, visual inspection also revealed specific failure 
modes consistent with confusion matrix findings. In several 
instances, small or distant objects (particularly motorcycles and 
animals) were missed entirely or classified as background, 
confirming the quantitative observation of background 

misclassifications. Overlapping or partially occluded objects 
occasionally produced merged bounding boxes or missed 
detections, indicating challenges in instance segmentation 
when objects overlap significantly. Some traffic signs with 
severe weathering, fading, or non-standard designs were either 
missed or classified with low confidence, consistent with the 
lower precision observed for warning signs in the confusion 
matrix. 

F. Discussion and Implications 
The 96.8 % mAP@0.5 achieved in this study represents a 

substantial advance for vision-only object detection in 
unstructured African traffic environments. This performance 
aligns with Ahmed (2025), who integrated YOLOv5 with 
monocular depth estimation for real-time AV perception, 
achieving higher detection accuracy than Faster R-CNN and 
SSD baselines through data augmentation and transfer learning. 
These findings align closely with Mutabarura et al. (2025), who 
evaluated YOLOv5, YOLOv8, and YOLOv11 on an East 
African road obstacles dataset and reported that YOLOv5 
achieved 94.68 % mAP@0.5 at IoU=0.5, the highest among the 
three, with superiority attributed to its efficient backbone and 
balanced regularisation on domain-specific data. Similarly, 
Alahdala et al. (2024) compared YOLO variants on Middle 
Eastern urban traffic and found YOLOv5 (94 % mAP) 
outperforming YOLOv8 (92.7 %) and YOLOv7 (44.1 %), 
emphasising that YOLOv5's parameter efficiency and stability 
yield better results on moderate-sized regional datasets without 
overfitting. The consistency observed here (YOLOv5 at 97% 
vs. YOLOv8/v11 at 96%) reinforces this consensus: dataset 
quality, class balancing, and augmentation contribute more to 
detection accuracy than architectural sophistication in informal 
traffic scenarios, making YOLOv5 preferable for cost-sensitive 
AV implementations in developing countries. Khanam et al. 
(2025) conducted a comparative evaluation of YOLOv5, 
YOLOv8, and YOLOv11 for solar-panel defect detection on a 
large-scale photovoltaic dataset. While YOLOv11 achieved the 
highest overall mAP@0.5 (93.4 %), YOLOv5 recorded the 
fastest inference time (7.1 ms/image) and the highest precision 
on critical but frequent defect classes (e.g., cracks: 94.1 %). The 
authors concluded that YOLOv5 remains the preferred choice 
when computational resources are constrained and real-time 
performance is prioritised over marginal accuracy gains on 
balanced datasets, a finding that directly mirrors the results 
obtained here on Nigerian road scenes. This convergence 
reinforces the broader conclusion that, for real-world 
deployment in resource-limited environments, YOLOv5’s 
maturity, speed, and robustness continue to outweigh the 
incremental benefits of newer architectures on moderate-sized, 
domain-specific datasets. 

However, the results partially diverge from benchmarks on 
comparable informal-traffic datasets in South Asia. Saha et al. 
(2024) evaluated YOLOv5–v8 on the Bangladesh Native 
Vehicle Dataset (BNVD) with 17,326 images of local classes 
like three-wheelers and wheelbarrows, achieving 84.8 % 
mAP@0.5 overall but only 64.3 % mAP@0.5:0.95 due to 
imbalance on rare vehicles, a challenge mitigated here through 
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oversampling (tricycles: 92.6 %). Their finding that newer 
YOLO versions close the gap on larger datasets (>15,000 
images) suggests the present YOLOv5 edge may narrow as the 
Nigerian corpus scales. 

5. Conclusion 
This study developed and rigorously evaluated a vision-only 

object detection system specifically designed for the challenges 
of Nigerian roads. By constructing a custom dataset of 8,093 
real-world images annotated with 22 contextually relevant 
classes and training a lightweight YOLOv5 model, the system 
achieved an mAP@0.5 of 96.8%. The results demonstrate that 
high-accuracy, real-time autonomous perception is attainable 
using low-cost cameras and consumer-grade hardware, 
provided that a carefully curated, regionally representative 
dataset is available. Safety-critical objects such as pedestrians, 
tricycles, and motorcycles are detected with sufficient 
reliability to support supervised autonomous operation, and the 
system’s robustness across diverse lighting, weather, and clutter 
conditions confirms its practical readiness. By removing 
reliance on expensive LIDAR and radar systems, this work 
offers a scalable, affordable blueprint for autonomous vehicle 
development in Nigeria and similar low- and middle-income 
countries. With further dataset expansion and minor 
architectural refinements, the proposed system can advance 
rapidly toward real-world deployment, contributing to safer 
roads, reduced traffic fatalities, and more inclusive mobility in 
developing regions. 
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