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Abstract: Autonomous vehicles (AVs) offer substantial
improvements in safety and efficiency; however, global perception
benchmarks are primarily based on structured traffic
environments in developed countries and do not capture the
informal and complex road conditions common in Nigeria and
other African nations. To address this gap, the present study
developed a custom dataset comprising 8,093 real-world images
from Nigerian roads, annotated with 22 contextually relevant
classes, including tricycles (Keke NAPEP), Okada motorcycles,
street vendors, potholes, animals, and degraded traffic signs.
Three lightweight You Only Look Once (YOLO) models (v5, v8,
and v11) were trained and evaluated using extensive data
augmentation. YOLOVS demonstrated the highest performance,
achieving an mAP@0.5 of 96.8%, a peak F1-score of 0.94, and
real-time inference at 82 FPS on an NVIDIA RTX 2060,
outperforming YOLOvS8 and YOLOVvV11 while requiring the fewest
parameters. Notably, strong results were observed for safety-
critical classes (pedestrians: 98.3%; tricycles: 92.6%), while
degraded signage and small or occluded objects remained the
primary limitations. These findings indicate that high-accuracy,
vision-only perception for autonomous vehicles is feasible in
resource-constrained, unstructured African traffic environments
using low-cost cameras and consumer-grade hardware, provided
that a locally collected dataset and robust augmentation strategies
are employed. This work establishes a scalable, cost-effective
benchmark and provides publicly available resources to support
AV development in Nigeria and comparable developing regions.
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1. Introduction
Autonomous vehicles (AVs) have the potential to

significantly transform transportation by reducing human error,
enhancing road safety, and lowering traffic fatalities (Caesar et
al., 2020; Di Lillo et al., 2023; Soni, 2024). Object detection,
the automated identification and localisation of objects in
images or video, is fundamental to AV perception. It enables
the classification of entities such as pedestrians, vehicles, traffic
signs, and barriers within the operational environment (Du,
2023). However, existing global benchmarks, including KITTI,
nuScenes, and Waymo Open, do not capture the complexity of
informal transport modes, unpredictable pedestrian crossings,
and degraded signage that are prevalent on Nigerian roads.
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These standard datasets are characterised by predictable traffic
patterns and infrastructure that supports advanced sensing
technologies (Caesar et al., 2020; Tan ef al., 2025).

Unlike the structured road networks represented in many
global datasets, road environments in developing countries such
as Nigeria are characterised by informal transport modes,
including tricycles and motorcycles, roadside vendors
encroaching on traffic lanes, unpredictable pedestrian
crossings, degraded signage, potholes, speed bumps, and a
heterogeneous mix of motorised and non-motorised traffic.
These distinguishing features are not reflected in the global
datasets commonly used for AV training (Tucho, 2022;
Achenef ef al., 2025). The resulting variability increases
detection challenges and often leads to models trained on global
datasets failing to recognise obstacles unique to African
contexts (Mutabarura, Muchuka, & Segera, 2025).

Deep learning methods, particularly convolutional neural
networks (CNNs), have substantially advanced object detection
by utilising hierarchical feature learning from annotated images
(Deng & Li, 2024; Mahajan & Mane, 2023). CNNs are a class
of artificial neural networks designed to process grid-like data,
such as images, and form the backbone of single-stage
architectures. Approaches such as You Only Look Once
(YOLO) facilitate real-time inference and balance precision and
latency, making them suitable for AV deployment
(Montgomerie-Corcoran, Toupas, Yu, & Bouganis, 2023;
Wang et al., 2024). In these single-stage methods, the model
predicts object locations and classes directly from the input
image in a single network pass. However, these models exhibit
diminished effectiveness in underrepresented contexts that lack
localised data reflecting the unique characteristics of African
traffic (Mutabarura, Muchuka, & Segera, 2025).

Road transport in Nigeria accounts for over 90% of passenger
and freight mobility, and rapid vehicle growth combined with
infrastructure deficits contributes to chaotic traffic conditions
(Uhegbu, 2020). Objects such as tricycles ("Keke NAPEP"),
roadside vendors, and jaywalking pedestrians are prevalent but
are rarely represented in global AV datasets. Consequently, AV
perception systems trained on standard benchmarks often fail to
detect or classify these critical objects, posing significant safety
risks.
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To address these challenges specific to the Nigerian context,
this study develops an object detection system tailored to the
unique conditions of Nigerian roads, with a focus on
constructing an annotated dataset that accurately represents
these environments. The objectives are to compile a primary
dataset of images from Nigerian roads annotated with common
objects such as tricycles, street vendors, pedestrians, and other
typical obstacles; to develop a system capable of detecting and
classifying traffic signs from camera images in real time; to
detect and classify both static and dynamic objects in Nigerian
settings; and to evaluate the accuracy and efficiency of the
developed system in real-time object recognition and
classification. This research advances AV equity in low- and
middle-income countries and aligns with United Nations
Sustainable Development Goals 9 (industry, innovation, and
infrastructure) and 11 (sustainable cities and communities).
Given the limited research on vision-only perception systems
adapted to African contexts (Wang et al., 2024; Achenef et al.,
2025), these findings contribute to the development of resilient
and cost-effective AV solutions for emerging economies.

2. Literature Review

Ahmed (2025) developed a real-time perception system that
integrates YOLOVS for object detection with a monocular
depth-estimation network to improve autonomous driving
performance under varied environmental conditions. The study
addressed challenges such as lighting variation, occlusion, and
limited training data by applying data augmentation and
transfer learning, achieving higher detection accuracy than
earlier approaches based on Faster R-CNN and SSD. Although
distance estimation was a major focus, the findings reinforce
the effectiveness of YOLO-based detectors in real-time traffic
environments. The relevance of this work to the present study
lies in its demonstration of YOLOVS5’s robustness in complex
road scenarios, further supporting the use of YOLO
architectures for vision-only autonomous navigation on
developing-world road networks.

Tan et al. (2025) proposed SceneDiffuser++, a diffusion-
based generative world model enabling city-scale, point-to-
point traffic simulation. Trained on the Waymo Open Motion
Dataset, it jointly performs scene generation, long-horizon
agent prediction, occlusion reasoning, dynamic agent
spawning/removal, and traffic-light simulation. The model
significantly outperforms log-replay baselines in terms of
realism across extended rollouts. Although tested in structured
North American cities, the work underscores the need for
generative capabilities in highly dynamic, unstructured
environments like Nigerian roads, supporting the vision-only
perception approach and dataset-centric strategy of the present
study.

Mutabarura et al. (2025) developed a custom African road-
obstacles dataset containing rare classes, such as livestock and
wildlife, frequently encountered on sub-Saharan roads, thereby
addressing a significant gap in global benchmarks. Three
YOLO versions (v3, v5, v8) were evaluated, with YOLOvS
achieving the highest mAP@0.5 of 94.68 % when trained with
offline data augmentation. The authors emphasised that

International Journal of Recent Advances in Multidisciplinary Topics, VOL. 6, NO. 12, DECEMBER 2025 20

augmentation dramatically improved performance on minority
classes and concluded that YOLOvVS remains the most effective
lightweight architecture for real-time obstacle detection in
African driving conditions. These findings directly support the
superiority of YOLOVS5 observed in the present Nigerian study
and validate the critical role of region-specific datasets and
augmentation strategies in overcoming domain gaps.

Achenef et al. (2025) conducted a review of intelligent
control systems for autonomous vehicles, focusing on
perception, decision-making, and motion control in global
contexts. They highlighted that most breakthroughs in object
detection and sensor fusion have been validated on structured
datasets from North America, Europe, and China, whereas very
limited research addresses the wunique challenges of
unstructured African roads, including informal transport
modes, degraded signage, and mixed traffic with livestock. The
authors noted the scarcity of region-specific datasets and the
poor generalisation of globally trained models in low- and
middle-income countries, aligning directly with the motivation
of the present Nigerian study. They concluded that future
progress in African AV deployment requires custom datasets
and lightweight, vision-only architectures, findings that
strongly support the high performance achieved in this study
using only low-cost cameras and YOLOvS5 on a Nigerian-
specific dataset.

Di Lillo et al. (2023) compared Waymo’s fully driverless
service with human drivers using third-party liability claims
data. Over 3.8 million rider-only miles, Waymo recorded zero
bodily-injury claims (vs. human baseline 1.11 cpmm) and
reduced property-damage claims by 76 % (0.78 vs. 3.26 cpmm).
The authors concluded that a mature vision-based Level-4
system is significantly safer toward other road users than human
drivers, especially vulnerable ones. These findings strongly
support the safety potential of the high detection rates achieved
in the present study for pedestrians, tricycles, and motorcycles
in Nigerian traffic conditions.

Du (2023) reviewed deep learning-based object detection
techniques for autonomous vehicles, categorising them into
two-stage (R-FCN, Mask R-CNN) and one-stage (SSD,
RetinaNet, YOLO) algorithms. Among one-stage detectors,
YOLO was highlighted for its superior real-time performance
through single-pass prediction of bounding boxes and class
probabilities, making it particularly suitable for resource-
constrained autonomous driving applications. The author
concluded that YOLO variants consistently outperform other
one-stage methods in speed—accuracy trade-offs on standard
benchmarks, supporting the selection of YOLOVS as the core
detector in the present Nigerian road study, where real-time
inference on consumer-grade hardware is essential.

3. Methodology

A vision-based object detection system was developed for
AVs, with a focus on Nigerian roads. A custom dataset of 8,093
images was collected, covering both urban and rural areas.
These images included tricycles (Keke NAPEP), motorcycles,
roadside vendors, pedestrians, and conventional vehicles. They
were captured under various lighting and weather conditions.
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The dataset was divided into training (7,000 images), validation
(1,000 images), and test (93 images) sets to support robust
generalisation.
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Fig. 1. Dataset composition and annotation analysis
Distribution of object instances across classes (top left), spatial distribution of bounding
box annotations (top right), normalised centre coordinates of annotated objects (bottom
left), and normalised bounding box dimensions showing object scale variation (bottom
right). Source: Researcher's Analysis (2025)

Three YOLO variants (YOLOvV5, YOLOvS, and YOLOv11)
were tested for real-time object detection. YOLOVS was chosen
for its superior performance, particularly in Average Precision
at 50% IoU (mAP50) and balanced precision-recall. The single-
stage detection in YOLOVS processes entire images in a single
pass, enabling real-time AV inference.

Model training was performed on an NVIDIA GeForce RTX
2060 GPU (6GB VRAM) using Python 3.11 and PyTorch 2.7.0
with CUDA acceleration. YOLOvS5 version 8.3.130 was
utilised as the training framework. The hyperparameters
included a batch size of 8, input image resolution of 640x640
pixels, and the AdamW optimiser (a gradient-based
optimisation algorithm) with a learning rate of 0.0004. Box loss
was used for bounding-box regression, classification loss for
class prediction, and Distribution Focal Loss (DFL), which
helps the model focus on difficult examples, were applied to
improve detection of challenging objects. Data augmentation
was implemented using RandAugment with random
transformations such as rotation, horizontal flipping, and colour
adjustment to increase model robustness. Training was
conducted for 50 epochs, with early stopping applied at epoch
25 to prevent overfitting if validation performance did not
improve for 10 consecutive epochs. Learning rate scheduling
was used to optimise convergence.

Model performance was evaluated using standard object
detection metrics. Precision, defined as the proportion of true
positives to total positive predictions, quantifies the accuracy of
detected objects:

TP

P . . -
recision TP + FP

Recall quantified the ratio of true positives to actual
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positives:

TP

Recall = TP+—FN

Mean Average Precision at 50% IoU (mAP50) evaluated
average precision across all object classes at 0.5 IoU threshold:

mAP50 = N1i = 1Y NAP(i)

where N represents the number of classes. Mean Average
Precision across IoU thresholds 0.5 to 0.95 (mAP50-95)
provided comprehensive performance assessment: mAP50-95
=(1/10)Yi-1" mAP(IoU = 0.5 + 0.05-1). Precision-recall curves
visualized detection trade-offs, while confusion matrices
identified misclassification patterns across object classes.

Where N is the number of classes and AP(i) is the Average
Precision for class iii.

mAP50-95: This metric calculates the mean Average
Precision at multiple IoU thresholds (from 0.5 to 0.95) and is
given by:

MAPS50 — 95 = ISZi
— 15mAP(IoU = 0.5 + 0.05 - )mAP50-95

5
1
= EZ mAP(IoU = 0.5 + 0.05 - ))mAP50
i=1

— 95 = 51i
- 12 5mAP(IoU = 0.5 + 0.05 - i)

Where iii takes values from 0 to 5 corresponding to IoU
thresholds of 0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, and
0.95. In addition to these metrics, Precision-Recall curves were
plotted to visually assess the model's performance, and a
confusion matrix was generated to analyse the misclassified
objects in detail.

4. Results and Discussion

A. Training and Validation Performance
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Fig. 2. Training and validation curves of the YOLOv5 model.
Top row (from left to right): training box loss, classification loss, and DFL loss. Bottom
row: validation box loss, classification loss, DFL loss, precision, recall, mAP@0.5, and
mAP@0.5:0.95. All curves show stable convergence and no overfitting. Source:
Researcher’s Analysis (2025)

The YOLOvV5 model was trained for 25 epochs with early
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stopping. Figure 2 presents the complete training and validation
curves. The three loss components (box loss, cls loss, and
dfl loss) decrease steadily on both training and validation sets
without divergence, confirming successful convergence and the
absence of overfitting. Validation precision, recall, mAP@0.5,
and mAP@0.5:0.95 all rise smoothly and plateau at high values
(mAP@0.5 =~ 0.968, mAP@0.5:0.95 =~ 0.742), indicating
excellent generalisation on the held-out validation split.

B. Model Comparison and Selection Rationale

Table 1
Model MAP comparison
S.No. Model mAP (%)
1 YOLOVS 97
2 YOLOVS8 96
3 YOLOvIl 96

The benchmarking results in Table 1 compare YOLOVS's
performance with other models, including YOLOvVS and
YOLOvI11. YOLOVS outperforms these models, particularly in
real-time object detection and classification, due to its faster
inference and lower computational resource requirements. This
makes YOLOVS especially suitable for deployment in resource-
constrained environments typical of developing countries such
as Nigeria.

The YOLOvS5 demonstrated superior convergence
characteristics on the specific dataset size and composition used
in this study. The 8,093-image dataset, while substantial for
regional studies, represents a moderate-scale training corpus
where excessive architectural complexity may induce
overfitting rather than improved generalisation. YOLOVS's
relatively simpler architecture, with fewer parameters than
YOLOvVS and YOLOvll, may have provided a better
complexity-data size match, enabling more stable training
dynamics. Also, the architectural innovations in YOLOv8 and
YOLOVI11 (improved backbone networks, modified detection
heads, enhanced feature pyramid networks) may provide
advantages primarily on extremely large-scale datasets or
specific challenging scenarios (dense small objects, extreme
aspect ratios) that were not predominantly represented in the
Nigerian road dataset.

The findings of this study are consistent with those of
Mutabarura et al. (2025), who identified YOLOVS as the most
effective model for African obstacle detection. Similarly,
Alahdala et al. (2024) reported that YOLOVS (0.94)
outperformed YOLOv7 (0.441) and YOLOvS8 (0.927). The
consistent performance across all three YOLO variants (96-
97% mAP range) indicates that dataset quality, annotation
accuracy, and regional specificity have a greater impact on
detection accuracy than architectural sophistication in this
application domain. This implies that deploying YOLOVS may
be preferable for resource-constrained autonomous vehicle
implementations in developing countries, where inference
speed and hardware requirements directly affect system cost
and accessibility.

C. Precision-Recall and Confidence Analysis

The Precision-Recall curve (Figure 3) demonstrates robust
detection performance, achieving an mAP@0.5 of 0.968 across
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all classes. Precision remains above 0.95 until recall reaches
approximately 0.80, indicating that the model detects the
majority of objects with very few false positives, which is a
highly desirable characteristic for safe autonomous navigation.

10 Precision-Recall Curve
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Fig. 3. Precision-Recall curve for YOLOvV5 model performance
Source: Researcher’s Analysis (2025)
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Fig. 4. Recall-Confidence curve showing near-perfect recall (>99 %) at
low confidence thresholds
Source: Researcher’s Analysis (2025)

The Recall-Confidence curve (Figure 4) shows that recall
exceeds 99% at low confidence thresholds and remains above
80% until the confidence threshold exceeds 0.9. The sharp
drop-off at very high thresholds confirms that the model’s
confidence scores are well calibrated.

F1-Confidence Curve

= all classes 0.94 at 0.518

0.0 0.2 0.4 0.6 0.8 1.0
Confidence

Fig. 5. F1-Confidence curve of the YOLOVS model on the test set (peak

F1=0.94 at confidence threshold ~ 0.518)
Source: Researcher’s Analysis (2025)
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The F1-Confidence curve (Figure 5) identifies the optimal
operating point, with a peak F1-score of 0.94 at a confidence
threshold of approximately 0.518. The Fl-score stays above
0.90 across a wide confidence range (0.25-0.65), providing
substantial flexibility: lower thresholds can be selected to
maximise recall for safety-critical classes (e.g., pedestrians,
tricycles, animals), while higher thresholds favour precision
when false positives must be minimised. The consistent
behaviour of individual class curves (grey lines) in both Figures
3 and 4 indicates stable training without overfitting or severe
class-specific biases.

D. Class-Specific Detection Performance

Confusion Matrix Normalized
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Fig. 6. Normalised confusion matrix showing the model's classification
results
Source: Researcher’s Analysis (2025)

The normalised confusion matrix (Figure 6) reveals clear
performance patterns across the 22 object classes. Traffic
infrastructure elements consistently achieved the highest
accuracy, with traffic lights, red lights, lane markings, and
pedestrian zebra crossings all attaining perfect or near-perfect
normalised scores (= 0.98), confirming the reliable recognition
of safety-critical regulatory features. Stop signs (0.98), railway
crossings (0.98), and T-intersection signs (0.96) also exhibited
excellent performance, reflecting the benefit of standardised
geometric shapes.

Conventional vehicles performed strongly, with buses (1.00)
and cars (0.92) showing robust detection. Informal transport
modes presented greater challenges due to visual similarity and
variability. Keke tricycles achieved 0.93 normalised accuracy
but exhibited minor confusion with Okada motorcycles (0.05
cross-error). In contrast, motorcycles registered the lowest
vehicle-class score (0.83), partly due to their smaller footprint
and diverse rider configurations. Wheelbarrows, representing
non-motorised informal cargo transport, reached 0.90 but were
occasionally misclassified as background when stationary or
heavily occluded.

Pedestrian detection was highly reliable (normalised
accuracy 1.00), even in unstructured crossing scenarios typical
of Nigerian roads. Animal detection attained 0.95, which is
commendable given the wide variety of livestock species and
contexts. Potholes scored 0.90, indicating solid hazard
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detection despite challenges from pavement texture and
shadows.

Warning signs (0.82) and yellow traffic lights (0.91) were the
weakest categories, primarily misclassified as background. This
reflects real-world degradation, including fading, damage, non-
standard designs, and variable mounting, commonly observed
in Nigerian infrastructure. Directional signs (U-turn: 1.00, T-
intersection:  0.96) substantially outperformed general
warnings, benefiting from more consistent visual cues.

Overall, off-diagonal errors remained low and systematic,
with no catastrophic safety-related confusions (e.g., pedestrian
— background or animal — background) exceeding 0.02.
These patterns highlight that remaining limitations are largely
attributable to physical infrastructure conditions and object
scale rather than fundamental model deficiencies.

E. Visual Detection Performance Analysis
} B k 2¢

Fig. 7. Sample test images showing YOLOVS5 detection outputs under
varying conditions (daylight, overcast, and low-light)
Source: Researcher’s Analysis (2025)

Visual inspection of detection outputs on the test set (Figures
7 and 8) confirmed robust bounding-box localisation across
diverse environmental conditions and object configurations,
validating the quantitative metrics observed in the precision-
recall, confidence, and confusion-matrix analyses. The
detection visualisations demonstrate several key capabilities
essential for real-world autonomous vehicle deployment.

The model successfully detected traffic signs in the test
images, including pedestrian crossings (cyan bounding boxes,
class ID 12), no-turn prohibitions (magenta bounding boxes,
class ID 5), traffic lights (cyan or blue bounding boxes, class
IDs 14/0), and warning signs (yellow boxes). These detections
occurred consistently across a range of lighting conditions,
including both bright daylight and overcast/low-light scenarios.
In addition, the model maintained high detection accuracy
regardless of the sign’s scale, effectively localising both nearby,
detailed signs and those that appeared small due to distance,
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which demonstrates the system’s proficiency in multi-scale
feature extraction. In analysing the visual output, the model
correctly detected and classified multiple distinct objects in
complex, cluttered scenes containing vehicles, pedestrians,
signs, and infrastructure. Specifically, several test images
showed between five and eight different objects accurately
identified in a single frame, with only a limited occurrence of
duplicate or missed detections. This clarity in object
identification and the minimal errors it produces are indicative
of the system’s robustness in visually challenging traffic
environments.

i

Fig.‘ 8. Addtional test images showing YOLOVS5 detection outputs in
dense urban scenes and varying weather conditions.
Source: Researcher’s Analysis (2025)

Road infrastructure element detection showed reliable
performance across different conditions. Lane markings,
potholes (orange boxes, class ID 18), U-turn zones, and traffic
lights were accurately localised despite variations in image
quality, perspective angles, and pavement conditions. The
model proved especially effective in pothole detection,
correctly recognising road surface irregularities of various
sizes, depths, and lighting environments, which is crucial for
safety and vehicle suspension management in autonomous
systems. The detection system maintained consistency between
grayscale and colour images, demonstrating resilience to
colour-space differences that can occur with different camera
sensors, lighting conditions, or image processing techniques.
This robustness is particularly advantageous for deployment
scenarios where camera specifications may vary or where
operation in low-light or nighttime conditions requires
alternative sensor configurations.

However, visual inspection also revealed specific failure
modes consistent with confusion matrix findings. In several
instances, small or distant objects (particularly motorcycles and
animals) were missed entirely or classified as background,
confirming the quantitative observation of background
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misclassifications. Overlapping or partially occluded objects
occasionally produced merged bounding boxes or missed
detections, indicating challenges in instance segmentation
when objects overlap significantly. Some traffic signs with
severe weathering, fading, or non-standard designs were either
missed or classified with low confidence, consistent with the
lower precision observed for warning signs in the confusion
matrix.

F. Discussion and Implications

The 96.8 % mAP@0.5 achieved in this study represents a
substantial advance for vision-only object detection in
unstructured African traffic environments. This performance
aligns with Ahmed (2025), who integrated YOLOVS with
monocular depth estimation for real-time AV perception,
achieving higher detection accuracy than Faster R-CNN and
SSD baselines through data augmentation and transfer learning.
These findings align closely with Mutabarura et al. (2025), who
evaluated YOLOvV5, YOLOv8, and YOLOvl1l on an East
African road obstacles dataset and reported that YOLOv5S
achieved 94.68 % mAP@0.5 at [oU=0.5, the highest among the
three, with superiority attributed to its efficient backbone and
balanced regularisation on domain-specific data. Similarly,
Alahdala et al. (2024) compared YOLO variants on Middle
Eastern urban traffic and found YOLOvVS (94 % mAP)
outperforming YOLOV8 (92.7 %) and YOLOvV7 (44.1 %),
emphasising that YOLOVS's parameter efficiency and stability
yield better results on moderate-sized regional datasets without
overfitting. The consistency observed here (YOLOvVS at 97%
vs. YOLOVS/v11 at 96%) reinforces this consensus: dataset
quality, class balancing, and augmentation contribute more to
detection accuracy than architectural sophistication in informal
traffic scenarios, making YOLOVS preferable for cost-sensitive
AV implementations in developing countries. Khanam et al.
(2025) conducted a comparative evaluation of YOLOVS,
YOLOVS, and YOLOv11 for solar-panel defect detection on a
large-scale photovoltaic dataset. While YOLOVI11 achieved the
highest overall mAP@0.5 (93.4 %), YOLOVS recorded the
fastest inference time (7.1 ms/image) and the highest precision
on critical but frequent defect classes (e.g., cracks: 94.1 %). The
authors concluded that YOLOVS remains the preferred choice
when computational resources are constrained and real-time
performance is prioritised over marginal accuracy gains on
balanced datasets, a finding that directly mirrors the results
obtained here on Nigerian road scenes. This convergence
reinforces the broader conclusion that, for real-world
deployment in resource-limited environments, YOLOVS’s
maturity, speed, and robustness continue to outweigh the
incremental benefits of newer architectures on moderate-sized,
domain-specific datasets.

However, the results partially diverge from benchmarks on
comparable informal-traffic datasets in South Asia. Saha ef al.
(2024) evaluated YOLOv5-v8 on the Bangladesh Native
Vehicle Dataset (BNVD) with 17,326 images of local classes
like three-wheelers and wheelbarrows, achieving 84.8 %
mAP@0.5 overall but only 64.3 % mAP@0.5:0.95 due to
imbalance on rare vehicles, a challenge mitigated here through
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oversampling (tricycles: 92.6 %). Their finding that newer
YOLO versions close the gap on larger datasets (>15,000
images) suggests the present YOLOVS edge may narrow as the
Nigerian corpus scales.

5. Conclusion

This study developed and rigorously evaluated a vision-only
object detection system specifically designed for the challenges
of Nigerian roads. By constructing a custom dataset of 8,093
real-world images annotated with 22 contextually relevant
classes and training a lightweight YOLOvVS5 model, the system
achieved an mAP@0.5 of 96.8%. The results demonstrate that
high-accuracy, real-time autonomous perception is attainable
using low-cost cameras and consumer-grade hardware,
provided that a carefully curated, regionally representative
dataset is available. Safety-critical objects such as pedestrians,
tricycles, and motorcycles are detected with sufficient
reliability to support supervised autonomous operation, and the
system’s robustness across diverse lighting, weather, and clutter
conditions confirms its practical readiness. By removing
reliance on expensive LIDAR and radar systems, this work
offers a scalable, affordable blueprint for autonomous vehicle
development in Nigeria and similar low- and middle-income
countries. With further dataset expansion and minor
architectural refinements, the proposed system can advance
rapidly toward real-world deployment, contributing to safer
roads, reduced traffic fatalities, and more inclusive mobility in
developing regions.
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