

Performance of BRB of RC Frame Structure with Concept of Soil Structure Intersection

Dhruv N. Patel^{1*}, Arjun M. Butala²

¹Student, Department of Structural Engineering, U. V. Patel College of Engineering, Ahmedabad, India ²Assistant Professor, Department of Structural Engineering, U. V. Patel College of Engineering, Ahmedabad,

India

Abstract: Earthquakes are one of the most dangerous natural phenomena on the planet. Seismic waves throughout the ground will destroy structures, cost lives, and cost huge sums of money in losses and repairs. When these seismic waves penetrate the soil layer, their properties are greatly affected. The effect of the relation between the superstructure and the primary soil are not taken into account in conventional foundation layout techniques. The majority of the time, work is under the assumption that the basis is fix. For building design for hard soil, it is appropriate to ignore the impact of soil structure interaction. However, avoiding SSI has incredible effect on structural reaction and construction for a building built on either soft or medium soil. When abnormalities are found in a structure, various frameworks are used to reduce seismic reaction. Buckling Restrained Braced (BRB) are one such choice. In this study, a ten-storey vertically symmetric RC building is connected to a two-storey X shape BRB. The building's reaction can be studied in variety of soil conditions, including soft and medium. The impact of soil-structure interaction will be compared with the results obtained when the structure is assumed to be fixed at the base. ETABS Programming can be used to analyses various parameters such as a storey displacement, storey drift, and overturning moment in order to determine seismic execution. The structure's reaction can be determined using various research methods such as the Equivalent Static Force Method (ESFM), Response Spectrum Method (RSM), and Non-linear Time History Method (NLTHM).

Keywords: Soil-Structure interaction, buckling restrained braces (BRB), vertically symmetric

1. Introduction

- Throughout history, we've built impressive structures and cities only for them to encounter the forces of nature. Earthquakes are one of the Earth's most destructive forces — the seismic waves throughout the ground can destroy buildings, take lives, and costs tremendous amounts of money for loss and repair.
- According to the National Earthquake Information Center, there is an average of 20,000 earthquakes each year —16 of them being major disasters. On September 20, 2017, a magnitude 7.1 rocked Mexico's capital city and killed approximately 230 people.
- To design an earthquake-proof building, engineers

need to reinforce the structure and counteract an earthquake's forces.

• Using Buckling-Restrained Braces (BRB) is a method to counteract earthquake's forces.

2. Objective of Study

There are the many parameters of the study but the following of Parameters are under study: -

• Storey displacement, Base shear, and overturning moment.

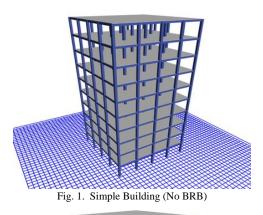
There are the Three Analysis Method using to the Study: -Equivalent Static Method, Response Spectrum Method and Time History Method. In the present study purpose using to the Equivalent Static Method

- To study response of building when soil flexibility is considered.
- Obtain optimum location of BRB.

Table 1 Model Details				
	No BRB			
SF	SM	SS		
9SF	9SM	9SS		
BRB F	Frame at (Corner		
CF	СМ	CS		
9CF	9CM	9CS		
BRB Frame at Edge				
EF	EM	ES		
9EF	9EM	9ES		

Table	2
-------	---

Material & section parameters				
Material property				
Concrete grade	M30			
Steel grade	Fe415			
section property				
Beam dimension	230 x 450 mm			
Column dimension	450 x 450 mm			
Slab thickness	135 mm			


^{*}Corresponding author: dhruvp24365@gmail.com

3. Analysis of Structural Model

In the present study total 18 no. of model was prepared by using ETABS software. There are Three Support Condition are taken: - Fixed, Medium Soil and Soft Soil.

Three Frames Are Considered: - Simple, BRB at Edge, BRB at Corner. Mass irregularity ratio of 3 is considered on 9th floor. Model number and model specification should be same for all three type of Condition model which is given in following table

Table 4					
Seismic parameter					
Seismic zone	IV				
Soil type	Type II (medium soil), III (soft soil)				
Importance factor	1				
Response reduction factor	5				

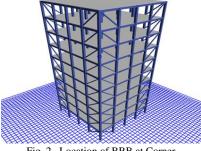
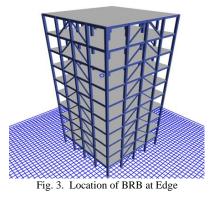
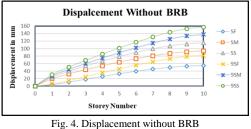
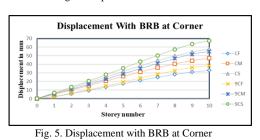



Fig. 2. Location of BRB at Corner




1) Modeling and Analysis of Structure

G+9 storey building with square floor plan of R.C.C frame designed by ETAB software. To prepared different model in ETAB, following data should be considered. And this primarily data should be same for all the models.

4. Results

1) Equivalent Static Analysis Method: Displacement Without BRB

Displacement With BRB at Edge

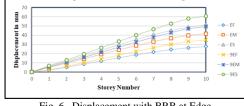


Fig. 6. Displacement with BRB at Edge

According to the findings, the most storey displacement was found for mass eccentric building with soft soil at the surface, and the least for normal buildings with BRBs at the edge and a fixed foundation. BRB decreased displacement by 35% to 65% since its introduction. When compared to BRB in the corner position, BRB at the edges was 6% to 7% more effective. For buildings with medium soil and soft soil at the foundation, there is only minor displacement.

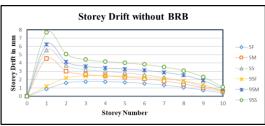


Fig. 7. Storey Drift without BRB

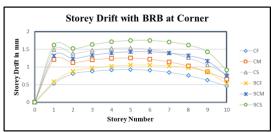


Fig. 8. Storey Drift with BRB at Corner

Fig. 9. Storey Drift with BRB at Edge

If the storey drift increase, so does the damage to the walls and column. Drift was greatly diminished when BRB was used. The middle storeys showed the greatest storey drift. As the base condition went from fixed to medium to soft soil, storey drift increased by 30-64%. As mass eccentricity was added, it increased by 30-34%. In addition, BRB at the edge was around 7% more effective than BRB at the corner.

Fig. 10. Overturning Moment without BRB

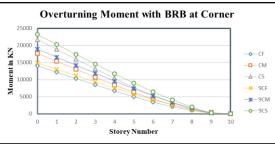


Fig. 11. Overturning Moment with BRB at Corner

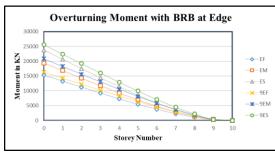


Fig. 12. Overturning Moment with BRB at Edge

The maximum for a mass eccentric building with soft soil at the base and BRB at the ground, an overturning moment was found. As the support state changed from fixed support to medium soil to soft soil, the overturning moment improved.

 Table 5

 Displacement without BRB

 SS
 9SF
 9SM

SF	SM	SS	9SF	9SM	9SS
0	0.008	0.01	0	0.012	0.013
3.777	19.46	23.89	5.204	26.89	30.53
10.64	32.43	39.82	14.66	44.73	50.87
18.19	43.62	53.57	25.10	60.19	68.52
25.72	54.12	66.46	35.63	74.88	85.30
32.90	64	78.588	45.92	89.01	101.44
39.49	73.02	89.674	55.73	102.42	116.79
45.23	80.88	99.316	64.80	114.82	130.98
49.82	87.17	107.04	72.73	125.67	143.42
53.00	91.54	112.41	78.68	133.82	152.76
54.77	94	115.42	81.41	137.60	157.11

Table 6 Displacement with BRB at Corner						
-	Displa	cement wi	th BRB a	at Corner		
CF	CM	CS	9CF	9CM	9CS	
0	0	0.069	0	0.062	0.076	
2.302	5.205	6.391	2.514	5.671	6.964	
5.785	10.05	12.344	6.312	10.996	13.503	
9.555	15.21	18.684	10.45	16.718	20.529	
13.49	20.56	25.256	14.84	22.721	27.9	
17.48	25.95	31.867	19.37	28.867	35.447	
21.37	31.19	38.308	23.92	35.012	42.993	
25.02	36.12	44.355	28.34	41.003	50.349	
28.27	40.53	49.775	32.54	46.686	57.328	
30.97	44.24	54.325	36.22	51.7	63.484	

38.5

54.916 67.434

32.96

47.04

57.762

Table 7							
	Disp	lacement v	with BRB	at Edge			
EF	EM	ES	9EF	9EM	9ES		
0	0.062	0.076	0	0.068	0.084		
2.179	5.099	6.261	2.55	5.602	6.879		
5.379	9.694	11.904	6.268	10.694	13.132		
8.741	14.47	17.777	10.205	16.042	19.698		
12.17	19.34	23.758	14.288	21.559	26.473		
15.59	24.17	29.683	18.426	27.134	33.319		
18.86	28.80	35.365	22.521	32.642	40.082		
21.86	33.05	40.595	26.464	37.946	46.596		
24.45	36.76	45.14	30.14	42.902	52.681		
26.48	39.70	48.753	33.253	47.134	57.878		
27.82	41.70	51.206	34.87	49.436	60.705		

7.02	41.70	51.200	54.07	47.450	00.705
		Ta	able 8		
	S	torey Drif	t without I	BRB	
SF	SM	SS	9SF	9SM	9SS
0.000	0.00	2 0	0	0	0
0.878	4.52	4 5.556	1.21	6.253	7.678
1.598	3 3.01	6 3.703	2.2	4.149	5.095
1.755	5 2.60	4 3.197	2.428	3.596	4.415
1.750) 2.44	2 2.998	2.45	3.415	4.193
1.671	2.29	6 2.819	2.393	3.285	4.034
1.533	3 2.10	0 2.578	2.281	3.121	3.832
1.334	1.82	6 2.242	2.109	2.883	3.54
1.067	1.46	3 1.796	1.845	2.524	3.099
0.740	1.01	8 1.25	1.382	1.894	2.326
0.411	0.57	0 0.7	0.635	0.879	1.079

Table 9

Storey Drift with BRB at CornerTable title						
CF	СМ	CS	9CF	9CM	9CS	
0	0	0	0	0	0	
0.535	1.21	1.486	0.585	1.319	1.619	
0.81	1.127	1.384	0.883	1.238	1.521	
0.877	1.201	1.475	0.964	1.331	1.634	
0.917	1.245	1.528	1.021	1.396	1.714	
0.927	1.252	1.537	1.052	1.429	1.755	
0.905	1.22	1.498	1.056	1.429	1.755	
0.848	1.145	1.406	1.031	1.393	1.711	
0.756	1.026	1.26	0.976	1.322	1.623	
0.627	0.862	1.058	0.855	1.166	1.432	
0.463	0.651	0.799	0.53	0.748	0.919	

Tab	le 1	0	
Drift w	ith F	RB	at

	Storey Drift with BRB at Edge						
	· · · ·	1	1	U			
EF	EM	ES	9EF	9EM	9ES		
0	0	0	0	0	0		
0.538	1.185	1.456	0.593	1.303	1.599		
0.786	1.069	1.312	0.865	1.184	1.454		
0.826	1.112	1.366	0.916	1.244	1.527		
0.804	1.133	1.391	0.95	1.283	1.576		
0.801	1.122	1.378	0.962	1.296	1.592		
0.772	1.076	1.321	0.952	1.281	1.573		
0.737	0.99	1.216	0.917	1.234	1.515		
0.637	0.861	1.057	0.855	1.153	1.415		
0.499	0.684	0.84	0.724	0.984	1.208		
0.329	0.465	0.57	0.376	0.535	0.657		

Table 11 at without DDD eturning Mc

SF	SM	SS	9SF	9SM	9SS
9125	12410	15238	11744	15972	19613
7914	10763	13217	10278	13979	17165
6707	9122	11201	8816.4	11990	14723
5514	7500	9209.8	7365.7	10017	12300
4354	5922	7272.6	5941.5	8080.5	9922.4
3252	4423	5431.9	4564.6	6207.8	7622.8
2240	3047	3742.1	3261.3	4435.3	5446.3
1359	1848	2269.5	2064.1	2807.2	3447.1
654.3	889.8	1092.6	1011.5	1375.6	1689.2
180.8	245.9	301.9	147.5	200.6	246.4
0	0	0	0	0	0

Table 12 Overturning Moment with BRB at Corner

CF	СМ	CS	9CF	9CM	9CS
14032	17697	21732	14889	18890	23195
12171	15349	18848	13031	16532	20301
10314	13009	15974	11177	14180	17412
8481	10696	13134	9338.3	11847	14547
6697	8446	10371	7532.6	9556.2	11734
5002	6308	7746.5	5786.8	7341.4	9014.8
3446	4346	5336.6	4134.5	5245.2	6440.7
2089	2635	3236.6	2616.7	3319.7	4076.4
1006	1268	1558.2	1282.3	1626.7	1997.5
278.0	350.6	430.6	187.1	237.4	291.5
0	0	0	0	0	0

Table 13

Overturning Moment with BRB at Edge						
EF	EM	ES	9EF	9EM	9ES	
15262	19397	23818	16293	20822	25568	
13237	16823	20658	14260	18223	22377	
11218	14258	17508	12231	15630	19193	
9223	11723	14395	10218	13058	16035	
7283	9257	11367	8242.7	10533	12934	
5440	6914	8490.2	6332.3	8092.3	9936.9	
3747	4763	5849.0	4524.2	5781.7	7099.5	
2273	2888	3547.3	2863.4	3659.3	4493.4	
1094	1390	1707.8	1403.1	1793.1	2201.8	
302.4	384.3	471.9	204.7	261.6	321.3	
0	0	0	0	0	0	

Base Reaction							
SF	SM	SS	9SF	9SM	9SS		
422.4	586.7	727.1	511.1	712.5	880.2		
CF	CM	CS	9CF	9CM	9CS		
649.4	837.8	1031.5	648.1	835.1	1027		
EF	EM	ES	9EF	9EM	9ES		
706.3	913.4	1125.3	709.2	924.5	1137.6		

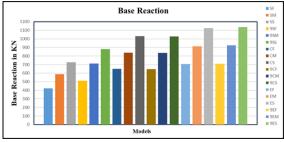


Fig. 13. Base Reaction

A mass eccentric building with a soft soil foundation and a BRB at the edge attracted the greatest base reaction. The addition of mass eccentricity, on the other hand, had no significant impact on the response.

6. Conclusion

The important conclusions which can be derived from this research work are as follow: -

- Optimum response is achieved by using a fixed base . with no mass eccentricity and adding BRB at the edge point.
- When BRB is used, displacement is reduced by 40-75 . percent.
- In the case of a building with spring dashpots, there is small displacement at the base line. When soft or medium soil is present in the earth, treating the foundation as fixed can be unnecessary technique when examine a building. When hard soil is available, however, it can be overlooked.
- If BRB is used, drift is reduced by 51-61 percent. As • result, there could be less damage to the walls.
- A mass eccentric configuration with soft soil at the bottom and BRB at the edge attracts the most lateral force.
- Where a mass eccentric structure has soft soil at the

foundation and a BRB at the tip, the overturning moment is greatest because the lateral load is greatest.

• According to the findings, BRB monitors quake reaction more effectively at the edge that at the corner.

References

- Naveen, S. E., Abraham, N. M., & Kumari, A. S. D. (2019). Analysis of irregular structures under earthquake loads. Procedia Structural Integrity, 14, 806–819.
- [2] Satheesh, A. J., Jayalekshmi, B. R., & Venkataramana, K. (2019). Effect of in-plan eccentricity in vertically mass irregular RC framed buildings under seismic loads. *Asian Journal of Civil Engineering*, 20(5), 713–726.
- [3] Sanyogita, & Saini, B. (2019). Seismic Analysis of Vertical Irregularities in Buildings. Springer International Publishing.
- [4] Teruna, D. R. (2019). Seismic behavior of RC building with and without buckling restrained braces. *Journal of Mechanical Engineering*, 16(1), 161–175.
- [5] Naghavi, M., Rahnavard, R., Thomas, R. J., & Malekinejad, M. (2019). Numerical evaluation of the hysteretic behavior of concentrically braced frames and buckling restrained brace frame systems. *Journal of Building Engineering*, 22, 415–428.
- [6] Kushal Parikh, Paresh V. Patel & Sharadkumar P. Purohit, (2018), Parametric study of multi-story buildings incorporating bucklingrestrained braces, (Taylor and Francis).
- [7] Jamnani, H. H., Abdollahzadeh, G., & Faghihmaleki, H. (2017). Seismic fragility analysis of improved RC frames using different types of bracing. *Journal of Engineering Science and Technology*, 12(4), 913–934.

- [8] Guerrero, H., Terán-Gilmore, A., Ji, T., & Escobar, J. A. (2017). Evaluation of the economic benefits of using Buckling-Restrained Braces in hospital structures located in very soft soils. Engineering Structures, 136, 406–419.
- [9] Tsai, K., Wu, A., Pan, K., & Yang, H. (2017). Buckling Restrained Braces for Existing and New Reinforced Concrete Frames.
- [10] Abou-Elfath, H., Ramadan, M., & Omar Alkanai, F. (2017). Upgrading the seismic capacity of existing RC buildings using buckling restrained braces. Alexandria Engineering Journal, 56(2), 251–262.
- [11] Almeida, A., Ferreira, R., Proença, J. M., & Gago, A. S. (2017). Seismic retrofit of RC building structures with Buckling Restrained Braces. Engineering Structures, 130, 14–22.
- [12] Ghosh, R., & Debbarma, R. (2019). Effect of slope angle variation on the structures resting on hilly region considering soil-structure interaction. *International Journal of Advanced Structural Engineering*, 11(1), 67–77.
- [13] Farid, H., Ali, H., Faraj, R. H., & Kareem, K. M. (2019). Seismic Behavior Analysis Considering Soil Structure Interaction of RC Multistory Buildings in Halabja City. Zanco Journal of Pure and Applied Sciences, 31(s3).
- [14] Abdel Raheem, S. E., Ahmed, M. M., & Alazrak, T. M. A. (2015). Evaluation of soil– foundation–structure interaction effects on seismic response demands of multi-story MRF buildings on raft foundations. *International Journal of Advanced Structural Engineering*, 7(1), 11–30.
- [15] Mira Petronijevic, Miroslav Marjanovic, Marko Radisic, (2014), Comparative seismic analysis of RC buildings under influence of soilstructure interaction, *Fourth International Conference Seismic Engineering and Engineering Seismology*, Beograd, pp. 343–352.
- [16] Buckling Restrained Braced Properties https://corebrace.com/resources/